0000000000133459

AUTHOR

Jacek Iwański

0000-0001-7861-0018

showing 2 related works from this author

Application of the Information Bottleneck method to discover user profiles in a Web store

2018

The paper deals with the problem of discovering groups of Web users with similar behavioral patterns on an e-commerce site. We introduce a novel approach to the unsupervised classification of user sessions, based on session attributes related to the user click-stream behavior, to gain insight into characteristics of various user profiles. The approach uses the agglomerative Information Bottleneck (IB) algorithm. Based on log data for a real online store, efficiency of the approach in terms of its ability to differentiate between buying and non-buying sessions was validated, indicating some possible practical applications of the our method. Experiments performed for a number of session sampl…

unsupervised classificationComputer science02 engineering and technologyE-commerceCustomer profile020204 information systems0202 electrical engineering electronic engineering information engineeringe-commerceWeb storeCluster analysisUser profileInformation retrievalbusiness.industrycustomer profileBehavioral patternInformation bottleneck methoddata miningComputer Science Applicationsmachine learningComputational Theory and MathematicsAgglomerative Information Bottleneck020201 artificial intelligence & image processinguser profilebusinessclusteringInformation SystemsJournal of Organizational Computing and Electronic Commerce
researchProduct

Identifying legitimate Web users and bots with different traffic profiles — an Information Bottleneck approach

2020

Abstract Recent studies reported that about half of Web users nowadays are intelligent agents (Web bots). Many bots are impersonators operating at a very high sophistication level, trying to emulate navigational behaviors of legitimate users (humans). Moreover, bot technology continues to evolve which makes bot detection even harder. To deal with this problem, many advanced methods for differentiating bots from humans have been proposed, a large part of which relies on supervised machine learning techniques. In this paper, we propose a novel approach to identify various profiles of bots and humans which combines feature selection and unsupervised learning of HTTP-level traffic patterns to d…

Web userInformation Systems and ManagementComputer scienceInternet robotFeature selection02 engineering and technologyMachine learningcomputer.software_genreUnsupervised learningSession (web analytics)Management Information SystemsIntelligent agentArtificial Intelligence020204 information systemsMachine learning0202 electrical engineering electronic engineering information engineeringCluster analysisBot detectionbusiness.industryInformation bottleneck methodWeb botServer logHierarchical clusteringUnsupervised learning020201 artificial intelligence & image processingArtificial intelligencebusinesscomputerSoftwareKnowledge-Based Systems
researchProduct