0000000000133745

AUTHOR

Jlenia Toppi

Estimation of Granger causality through Artificial Neural Networks: applications to physiological systems and chaotic electronic oscillators

One of the most challenging problems in the study of complex dynamical systems is to find the statistical interdependencies among the system components. Granger causality (GC) represents one of the most employed approaches, based on modeling the system dynamics with a linear vector autoregressive (VAR) model and on evaluating the information flow between two processes in terms of prediction error variances. In its most advanced setting, GC analysis is performed through a state-space (SS) representation of the VAR model that allows to compute both conditional and unconditional forms of GC by solving only one regression problem. While this problem is typically solved through Ordinary Least Sq…

research product

Estimating brain connectivity when few data points are available: Perspectives and limitations

Methods based on the use of multivariate autoregressive modeling (MVAR) have proved to be an accurate and flexible tool for the estimation of brain functional connectivity. The multivariate approach, however, implies the use of a model whose complexity (in terms of number of parameters) increases quadratically with the number of signals included in the problem. This can often lead to an underdetermined problem and to the condition of multicollinearity. The aim of this paper is to introduce and test an approach based on Ridge Regression combined with a modified version of the statistics usually adopted for these methods, to broaden the estimation of brain connectivity to those conditions in …

research product

Estimation of brain connectivity through Artificial Neural Networks

Among different methods available for estimating brain connectivity from electroencephalographic signals (EEG), those based on MVAR models have proved to be flexible and accurate. They rely on the solution of linear equations that can be pursued through artificial neural networks (ANNs) used as MVAR model. However, when few data samples are available, there is a lack of accuracy in estimating MVAR parameters due to the collinearity between regressors. Moreover, the assessment procedure is also affected by the lack of data points. The mathematical solution to these problems is represented by penalized regression methods based on l 1 norm, that can reduce collinearity by means of variable sel…

research product

Measuring the agreement between brain connectivity networks.

Investigating the level of similarity between two brain networks, resulting from measures of effective connectivity in the brain, can be of interest from many respects. In this study, we propose and test the idea to borrow measures of association used in machine learning to provide a measure of similarity between the structure of (un-weighted) brain connectivity networks. The measures here explored are the accuracy, Cohen's Kappa (K) and Area Under Curve (AUC). We implemented two simulation studies, reproducing two contexts of application that can be particularly interesting for practical applications, namely: i) in methodological studies, performed on surrogate data, aiming at comparing th…

research product

Single-trial Connectivity Estimation through the Least Absolute Shrinkage and Selection Operator.

Methods based on the use of multivariate autoregressive models (MVAR) have proved to be an accurate tool for the estimation of functional links between the activity originated in different brain regions. A well-established method for the parameters estimation is the Ordinary Least Square (OLS) approach, followed by an assessment procedure that can be performed by means of Asymptotic Statistic (AS). However, the performances of both procedures are strongly influenced by the number of data samples available, thus limiting the conditions in which brain connectivity can be estimated. The aim of this paper is to introduce and test a regression method based on Least Absolute Shrinkage and Selecti…

research product