0000000000133746

AUTHOR

Laura Astolfi

showing 9 related works from this author

Estimation of Granger causality through Artificial Neural Networks: applications to physiological systems and chaotic electronic oscillators

2021

One of the most challenging problems in the study of complex dynamical systems is to find the statistical interdependencies among the system components. Granger causality (GC) represents one of the most employed approaches, based on modeling the system dynamics with a linear vector autoregressive (VAR) model and on evaluating the information flow between two processes in terms of prediction error variances. In its most advanced setting, GC analysis is performed through a state-space (SS) representation of the VAR model that allows to compute both conditional and unconditional forms of GC by solving only one regression problem. While this problem is typically solved through Ordinary Least Sq…

Artificial neural networks; Chaotic oscillators; Granger causality; Multivariate time series analysis; Network physiology; Penalized regression techniques; Remote synchronization; State-space models; Stochastic gradient descent L1; Vector autoregressive modelGeneral Computer ScienceDynamical systems theoryComputer science02 engineering and technologyChaotic oscillatorsPenalized regression techniquesNetwork topologySettore ING-INF/01 - ElettronicaMultivariate time series analysisVector autoregression03 medical and health sciences0302 clinical medicineScientific Computing and Simulation0202 electrical engineering electronic engineering information engineeringRepresentation (mathematics)Optimization Theory and ComputationNetwork physiologyState-space modelsArtificial neural networkArtificial neural networksData ScienceTheory and Formal MethodsQA75.5-76.95Stochastic gradient descent L1Granger causality State-space models Vector autoregressive model Artificial neural networks Stochastic gradient descent L1 Multivariate time series analysis Network physiology Remote synchronization Chaotic oscillators Penalized regression techniquesRemote synchronizationStochastic gradient descentAutoregressive modelAlgorithms and Analysis of AlgorithmsVector autoregressive modelElectronic computers. Computer scienceSettore ING-INF/06 - Bioingegneria Elettronica E InformaticaGranger causality020201 artificial intelligence & image processingGradient descentAlgorithm030217 neurology & neurosurgeryPeerJ Computer Science
researchProduct

Estimating brain connectivity when few data points are available: Perspectives and limitations

2017

Methods based on the use of multivariate autoregressive modeling (MVAR) have proved to be an accurate and flexible tool for the estimation of brain functional connectivity. The multivariate approach, however, implies the use of a model whose complexity (in terms of number of parameters) increases quadratically with the number of signals included in the problem. This can often lead to an underdetermined problem and to the condition of multicollinearity. The aim of this paper is to introduce and test an approach based on Ridge Regression combined with a modified version of the statistics usually adopted for these methods, to broaden the estimation of brain connectivity to those conditions in …

Multivariate statisticsUnderdetermined system0206 medical engineeringBiomedical EngineeringSignal Processing; Biomedical Engineering; 1707; Health InformaticsHealth Informatics02 engineering and technologyMachine learningcomputer.software_genreBrain Mapping Brain03 medical and health sciences0302 clinical medicineFalse positive paradox1707MathematicsBrain Mappingbusiness.industryBrain020601 biomedical engineeringRegressionData pointAutoregressive modelMulticollinearitySignal ProcessingSettore ING-INF/06 - Bioingegneria Elettronica E InformaticaOrdinary least squaresArtificial intelligenceData miningbusinesscomputer030217 neurology & neurosurgery2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
researchProduct

Estimation of brain connectivity through Artificial Neural Networks

2019

Among different methods available for estimating brain connectivity from electroencephalographic signals (EEG), those based on MVAR models have proved to be flexible and accurate. They rely on the solution of linear equations that can be pursued through artificial neural networks (ANNs) used as MVAR model. However, when few data samples are available, there is a lack of accuracy in estimating MVAR parameters due to the collinearity between regressors. Moreover, the assessment procedure is also affected by the lack of data points. The mathematical solution to these problems is represented by penalized regression methods based on l 1 norm, that can reduce collinearity by means of variable sel…

Computer scienceFeature selection02 engineering and technologyConnectivity measurements03 medical and health sciences0302 clinical medicine0202 electrical engineering electronic engineering information engineeringArtificial neural networkbusiness.industryProcess (computing)BrainPattern recognitionElectroencephalographyCollinearityCausalityData pointCausality; Connectivity measurements; Physiological systems modeling - Multivariate signal processingNorm (mathematics)Physiological systems modeling - Multivariate signal processingRegression Analysis020201 artificial intelligence & image processingAnalysis of varianceArtificial intelligenceNeural Networks ComputerbusinessAlgorithms Brain Electroencephalography Regression Analysis Neural Networks Computer030217 neurology & neurosurgeryLinear equationAlgorithms
researchProduct

Testing different methodologies for Granger causality estimation: A simulation study

2021

Granger causality (GC) is a method for determining whether and how two time series exert causal influences one over the other. As it is easy to implement through vector autoregressive (VAR) models and can be generalized to the multivariate case, GC has spread in many different areas of research such as neuroscience and network physiology. In its basic formulation, the computation of GC involves two different regressions, taking respectively into account the whole past history of the investigated multivariate time series (full model) and the past of all time series except the putatively causal time series (restricted model). However, the restricted model cannot be represented through a finit…

Multivariate statisticsstate space modelsSeries (mathematics)Computer scienceGranger causality; state space modelsDynamical NetworksMultivariate Time SeriesReduction (complexity)Autoregressive modelGranger causalitySettore ING-INF/06 - Bioingegneria Elettronica E InformaticaGranger causalityState spaceConditioningTime seriesVector Autoregressive ProcessesAlgorithm2020 28th European Signal Processing Conference (EUSIPCO)
researchProduct

Information Transfer in Linear Multivariate Processes Assessed through Penalized Regression Techniques: Validation and Application to Physiological N…

2020

The framework of information dynamics allows the dissection of the information processed in a network of multiple interacting dynamical systems into meaningful elements of computation that quantify the information generated in a target system, stored in it, transferred to it from one or more source systems, and modified in a synergistic or redundant way. The concepts of information transfer and modification have been recently formulated in the context of linear parametric modeling of vector stochastic processes, linking them to the notion of Granger causality and providing efficient tools for their computation based on the state&ndash

conditional transfer entropyInformation transferlinear predictionDynamical systems theoryComputer scienceState–space modelsGeneral Physics and Astronomylcsh:AstrophysicsNetwork topologycomputer.software_genrenetwork physiology01 natural sciencesArticle03 medical and health sciences0302 clinical medicinepenalized regression techniquelcsh:QB460-4660103 physical sciencesEntropy (information theory)Statistics::Methodologylcsh:Science010306 general physicspartial information decompositionmultivariate time series analysisinformation dynamics; partial information decomposition; entropy; conditional transfer entropy; network physiology; multivariate time series analysis; State–space models; vector autoregressive model; penalized regression techniques; linear predictionState–space modellcsh:QC1-999multivariate time series analysiInformation dynamicData pointpenalized regression techniquesAutoregressive modelSettore ING-INF/06 - Bioingegneria Elettronica E InformaticaParametric modelOrdinary least squaresvector autoregressive modellcsh:QData mininginformation dynamicsentropycomputerlcsh:Physics030217 neurology & neurosurgery
researchProduct

Measuring the agreement between brain connectivity networks.

2016

Investigating the level of similarity between two brain networks, resulting from measures of effective connectivity in the brain, can be of interest from many respects. In this study, we propose and test the idea to borrow measures of association used in machine learning to provide a measure of similarity between the structure of (un-weighted) brain connectivity networks. The measures here explored are the accuracy, Cohen's Kappa (K) and Area Under Curve (AUC). We implemented two simulation studies, reproducing two contexts of application that can be particularly interesting for practical applications, namely: i) in methodological studies, performed on surrogate data, aiming at comparing th…

Computer scienceModels NeurologicalStructure (category theory)Biomedical EngineeringSignal Processing; Biomedical Engineering; 1707; Health InformaticsHealth Informatics02 engineering and technologycomputer.software_genreMeasure (mathematics)Surrogate dataData modeling03 medical and health sciencesAnalysis of Variance Area Under Curve Brain Brain Mapping Computer Simulation Electroencephalography Humans Nerve Net Signal Processing Computer-Assisted Models Neurological0302 clinical medicineSimilarity (network science)0202 electrical engineering electronic engineering information engineeringHumansComputer SimulationSensitivity (control systems)1707Analysis of VarianceBrain MappingBrainElectroencephalographySignal Processing Computer-AssistedArea Under CurveSignal Processing020201 artificial intelligence & image processingData miningNerve Netcomputer030217 neurology & neurosurgeryAnnual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
researchProduct

Single-trial Connectivity Estimation through the Least Absolute Shrinkage and Selection Operator.

2019

Methods based on the use of multivariate autoregressive models (MVAR) have proved to be an accurate tool for the estimation of functional links between the activity originated in different brain regions. A well-established method for the parameters estimation is the Ordinary Least Square (OLS) approach, followed by an assessment procedure that can be performed by means of Asymptotic Statistic (AS). However, the performances of both procedures are strongly influenced by the number of data samples available, thus limiting the conditions in which brain connectivity can be estimated. The aim of this paper is to introduce and test a regression method based on Least Absolute Shrinkage and Selecti…

Multivariate statisticsComputer science0206 medical engineering02 engineering and technologyConnectivity measurementsLeast squares03 medical and health sciences0302 clinical medicineLasso (statistics)Statistics::MethodologyLeast-Squares AnalysisStatisticShrinkagebusiness.industryBrainPattern recognitionElectroencephalography020601 biomedical engineeringCausalityData pointAutoregressive modelCausality; Connectivity measurements; Physiological systems modeling - Multivariate signal processingPhysiological systems modeling - Multivariate signal processingOrdinary least squaresLeast-Squares Analysis Brain ElectroencephalographyArtificial intelligencebusiness030217 neurology & neurosurgeryAnnual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
researchProduct

Information Dynamics Analysis: A new approach based on Sparse Identification of Linear Parametric Models*

2020

The framework of information dynamics allows to quantify different aspects of the statistical structure of multivariate processes reflecting the temporal dynamics of a complex network. The information transfer from one process to another can be quantified through Transfer Entropy, and under the assumption of joint Gaussian variables it is strictly related to the concept of Granger Causality (GC). According to the most recent developments in the field, the computation of GC entails representing the processes through a Vector Autoregressive (VAR) model and a state space (SS) model typically identified by means of the Ordinary Least Squares (OLS). In this work, we propose a new identification …

Multivariate statisticsComputer scienceEntropyGaussian0206 medical engineeringNormal Distribution02 engineering and technology01 natural sciencesLASSO regression010305 fluids & plasmassymbols.namesakeinformation TransferState Space modelsGranger causalityLasso (statistics)0103 physical sciencesStatistics::MethodologyState spaceLeast-Squares AnalysisShrinkageSparse matrixElectroencephalography020601 biomedical engineeringinformation Transfer; LASSO regression; State Space models; Granger causalityAutoregressive modelstate space modelParametric modelOrdinary least squaresLinear ModelssymbolsGranger causalityTransfer entropyAlgorithmInformation dyancamic analysi
researchProduct

Model-Based Transfer Entropy Analysis of Brain-Body Interactions with Penalized regression techniques

2020

The human body can be seen as a functional network depicting the dynamical interactions between different organ systems. This exchange of information is often evaluated with information-theoretic approaches which comprise the use of vector autoregressive (VAR) and state space (SS) models, normally identified with the Ordinary Least Squares (OLS). However, the number of time series to be included in the model is strictly related to the length of data recorded thus limiting the use of the classical approach. In this work, a new method based on penalized regressions, the so-called LASSO, was compared with OLS on physiological time-series extracted from 18 subjects during different stress condi…

Network physiologyPenalized regressionOrdinary Least Squares (OLS)Netywork PhysiologyNetywork Physiology; mental stress; entropyFunctional networksstate space modelAutoregressive modelSettore ING-INF/06 - Bioingegneria Elettronica E Informaticamental stressOrdinary least squaresStatisticsEntropy (information theory)least absolute shrinkage and selection operator (LASSO)Transfer entropyTime seriesentropyInformation DynamicsSubnetworkMathematics2020 11th Conference of the European Study Group on Cardiovascular Oscillations (ESGCO)
researchProduct