0000000000134103
AUTHOR
Frank Breitenbuecher
Cross-Inhibition of Interferon-Induced Signals by GM-CSF Through a Block in Stat1 Activation
We investigated the effects of granulocyte-macrophage colony-stimulating factor (GM-CSF) on biologic signals induced by interferon-alpha (IFN-alpha) and IFN-gamma. In hematopoietic cell lines, IFN-induced signaling was investigated by Western blotting, electrophoretic mobility shift assays (EMSA), flow cytometry, protein-tyrosine phosphatase (PTP) assays, and RT-PCR. GM-CSF inhibited IFN-alpha-induced and IFN-gamma-induced Stat1 tyrosine phosphorylation in a time-dependent manner. EMSA showed that GM-CSF inhibited IFN-alpha-induced and IFN-gamma-induced IFN-gamma activator sequence (GAS) binding activity. As a consequence, IFN-induced transcription of the early response gene, IFN-stimulated…
Identification of a novel activating mutation (Y842C) within the activation loop of FLT3 in patients with acute myeloid leukemia (AML).
Fms-like tyrosine kinase 3 (FLT3) receptor mutations as internal tandem duplication (ITD) or within the kinase domain are detected in up to 35% of patients with acute myeloid leukemia (AML). N-benzoyl staurosporine (PKC412), a highly effective inhibitor of mutated FLT3 receptors, has significant antileukemic efficacy in patients with FLT3-mutated AML. Mutation screening of FLT3 exon 20 in AML patients (n = 110) revealed 2 patients with a novel mutation (Y842C) within the highly conserved activation loop of FLT3. FLT3-Y842C-transfected 32D cells showed constitutive FLT3 tyrosine phosphorylation and interleukin 3 (IL-3)-independent growth. Treatment with PKC412 led to inhibition of proliferat…
Novel pathway in Bcr-Abl signal transduction involves Akt-independent, PLC-γ1-driven activation of mTOR/p70S6-kinase pathway
In chronic myeloid leukemia, activation of the phosphoinositide 3-kinase (PI3K)/Akt pathway is crucial for survival and proliferation of leukemic cells. Essential downstream molecules involve mammalian target of rapamycin (mTOR) and S6-kinase. Here, we present a comprehensive analysis of the molecular events involved in activation of these key signaling pathways. We provide evidence for a previously unrecognized phospholipase C-gamma1 (PLC-gamma1)-controlled mechanism of mTOR/p70S6-kinase activation, which operates in parallel to the classical Akt-dependent machinery. Short-term imatinib treatment of Bcr-Abl-positive cells caused dephosphorylation of p70S6-K and S6-protein without inactivat…
Sustained complete hematologic remission after administration of the tyrosine kinase inhibitor imatinib mesylate in a patient with refractory, secondary AML.
Abstract Imatinib mesylate, a tyrosine kinase inhibitor targeting bcr-abl, platelet-derived growth factor receptor (PDGF-R), and c-Kit, effectively induces hematologic and cytogenetic remissions in bcr-abl+ chronic myeloid leukemia (CML) and acute lymphoblastic leukemia (ALL) with only mild to moderate side effects. Here, we describe the successful treatment of a 64-year-old man with c-Kit+ secondary acute myeloid leukemia (AML) refractory to standard chemotherapy. Upon 2 weeks of imatinib mesylate administration, the patient achieved a complete hematologic remission in peripheral blood. In addition, complete clearance of leukemic blasts in bone marrow and a significant cytogenetic response…
Clinical Course and Significance of the Novel FLT3-Y842C Mutation in a Patient with AML Treated with PKC412 Monotherapy.
Abstract We recently identified a novel mutation (Y842C) within the tyrosine kinase domain of FLT3 in a patient treated with PKC410 monotherapy (ASH 2003, # 4681). Here, we present follow up studies including the clinical course of the patient and frequency analysis in 110 patients with AML. In addition, we characterized the novel mutation using overexpression of FLT3-Y842C in 32D cells. AML M2 was diagnosed in a 63 year old, male patient in 1993. After having experienced his second relapse upon standard therapy the patient was refractory to alemtuzumab treatment. Due to reduced performance status the patient was not eligible to standard chemotherapy and was enrolled into a phase II trial i…
Mechanisms of Resistance to the FLT3-Tyrosine Kinase Inhibitor PKC412 in Patients with AML.
Abstract The FLT3 receptor tyrosine kinase is expressed in 70-90% of cases of AML. Up to 35% of patients with AML show mutations in the JM-region or kinase domain of FLT3. These lead to autophosphorylation promoting ligand-independent cell proliferation and inhibition of apoptosis. Treatment with FLT3 tyrosine kinase inhibitors (TKI) is a promising tool in therapy of AML. Preliminary results investigating the FLT3-TKI PKC412 in patients with relapsed/refractory AML revealed that 11/15 patients (73%) with mutated FLT3 and 16/46 patients (35%) with WT FLT3 showed a >50% blast response in peripheral blood (Estey E et al. Blood.2003; 102:919a). Despite its remarkable efficacy in reducing…
The JAK2 Kinase Inhibitor LS104 Induces Growth-Arrest and Apoptosis in JAK2V617F Positive Cells.
Abstract The JAK2V617F-mutation (V617F) is a novel, highly prevalent molecular marker in Ph-negative myeloproliferative disease (MPD). In vitro, the V617F mutation confers cytokine independent growth of Ba/F3 cells expressing erythropoietin receptor (EpoR) and constitutive activation of the JAK2 kinase and of the JAK-STAT pathway. In a murine bone-marrow transplant model the V617F-mutation alone is sufficient to induce a polycythemia vera-like phenotype. Therefore, mutant JAK2 kinase is a promising target for kinase inhibitor development. In this report, we characterize the small molecule LS104 (previously CR4; Grunberger et al., Blood 2003) as a novel non-ATP-competitive JAK2V617F kinase i…
In BCR-ABL-positive cells, STAT-5 tyrosine-phosphorylation integrates signals induced by imatinib mesylate and Ara-C.
In BCR-ABL-positive cells, the transcription factor STAT-5 is constitutively activated by tyrosine phosphorylation. STAT-5 activation results in upregulation of bcl-X(L) and increased resistance to induction of apoptosis. Here, we investigated the effects of imatinib mesylate and cytosine arabinoside (Ara-C) on STAT-5 tyrosine-phosphorylation, cellular proliferation and induction of apoptosis in cell lines and primary hematopoietic cells. Imatinib mesylate treatment strongly suppressed STAT-5 tyrosine-phosphorylation in K562 and primary CML blasts. In contrast to JAK-2 and PI-3-kinase inhibition, exposure of K562 cells to imatinib mesylate resulted in obvious suppression of proliferation. R…
Efficacy and safety of imatinib in adult patients with c-kit–positive acute myeloid leukemia
Abstract This phase 2 pilot study was conducted to determine the efficacy and safety of imatinib mesylate in patients with c-kit–positive acute myeloid leukemia (AML) refractory to or not eligible for chemotherapy. Twenty-one patients were enrolled and received imatinib 600 mg orally once daily. Five responses were seen primarily in patients, starting with relatively low blast counts in bone marrow (BM) and peripheral blood (PB): 2 patients who were considered refractory on chemotherapy on the basis of persistence of blasts in PB and BM met the criteria for complete hematologic remission, 1 patient had no evidence of leukemia, and 2 patients achieved a minor response. Treatment with imatini…
LS104, a non-ATP-competitive small-molecule inhibitor of JAK2, is potently inducing apoptosis in JAK2V617F-positive cells
Abstract The activating JAK2V617F mutation has been described in the majority of patients with BCR-ABL-negative myeloproliferative disorders (MPD). In this report, we characterize the small-molecule LS104 as a novel non-ATP-competitive JAK2 inhibitor: Treatment of JAK2V617F-positive cells with LS104 resulted in dose-dependent induction of apoptosis and inhibition of JAK2 autophosphorylation and of downstream targets. Activation of these targets by JAK2 was confirmed in experiments using small interfering RNA. LS104 inhibited JAK2 kinase activity in vitro. This effect was not reversible using elevated ATP concentrations, whereas variation of the kinase substrate peptide led to modulation of …
Clinical resistance to the kinase inhibitor PKC412 in acute myeloid leukemia by mutation of Asn-676 in the FLT3 tyrosine kinase domain.
Activating mutations in the FLT3 tyrosine kinase (TK) occur in approximately 35% of patients with acute myeloid leukemia (AML). Therefore, targeting mutated FLT3 is an attractive therapeutic strategy, and early clinical trials testing FLT3 TK inhibitors (TKI) showed measurable clinical responses. Most of these responses were transient; however, in a subset of patients blast recurrence was preceded by an interval of prolonged remission. The etiology of clinical resistance to FLT3-TKI in AML is unclear but is of major significance for the development of future therapeutic strategies. We searched for mechanisms of resistance in 6 patients with AML who had relapses upon PKC412 treatment. In an …
Identification of a novel type of ITD mutations located in nonjuxtamembrane domains of the FLT3 tyrosine kinase receptor
Abstract In acute myeloid leukemia (AML), internal tandem duplications (ITDs) of the juxtamembrane (JM) of FLT3 have been shown to play a crucial role in driving proliferation and survival of the leukemic clone. Here, we report the identification of FLT3_ITD mutations located in non-JM domains of the FLT3-receptor. This novel type of FLT3_ITD mutation was found in 216 of 753 (28.7%) of unselected FLT3_ITD-positive AML cases. An FLT3 receptor harbouring a prototypic non-JM ITD (FLT3_ITD627E) mediated constitutive phosphorylation of FLT3 and of STAT5, suggesting that non-JM ITDs confer constitutive activation of the receptor. FLT3_ITD627E induced transformation of hematopoietic 32D cells and …
The kinase inhibitor LS104 induces apoptosis, enhances cytotoxic effects of chemotherapeutic drugs and is targeting the receptor tyrosine kinase FLT3 in acute myeloid leukemia.
Activating mutations of FLT3 are found in approximately one-third of acute myeloid leukemia (AML)-cases and are considered to represent an attractive therapeutic target. In this study, we report that the hydroxystyryl-acrylonitrile compound LS104 inhibits proliferation and induces potent cytotoxic effects in FLT3 expressing leukemic cells in vitro. Immunoblot and phosphoprotein-FACS analysis demonstrated inhibiton of phosphorylation of FLT3-ITD and of its downstream targets. In pharmacokinetic studies, a rapid and dose dependent cellular uptake of LS104 lasting up to 11h could be demonstrated. Combination of LS104 with chemotherapeutic agents markedly enhanced cytotoxic effects. Recently, a…
LS104, a Novel Kinase Inhibitor, Induces Apoptosis, Synergizes with Cytostatic Drugs and Is Targeting the Receptor Tyrosine Kinase FLT3.
Abstract Fms-like tyrosine kinase 3 (FLT3), a member of the class III tyrosine kinase receptor family, is expressed in up to 90% of acute myeloid leukemia (AML). Activating mutations like internal tandem duplication (ITD) of the juxtamembrane domain and kinase domain point mutations are found in approximately 35% of AML-cases and are considered to represent an attractive therapeutic target. In this study, we report that the novel hydroxystyryl-acrylonitrile compound LS104 induces potent cytotoxic effects in FLT3 ITD-positive leukemic cells. As a cellular model to investigate FLT3-ITD specific effects we used 32D myeloid cells stably transfected with FLT3-ITD and wt-FLT3, respectively. In MT…
A novel molecular mechanism of primary resistance to FLT3-kinase inhibitors in AML
Abstract Currently, FLT3 tyrosine kinase inhibitors (TKIs) are emerging as the most promising drug therapy to overcome the dismal prognosis of acute myelogenous leukemia (AML) patients harboring internal tandem duplications (ITDs) of FLT3. However, up-front drug resistance occurs in approximately 30% of patients, and molecular mechanisms of resistance are poorly understood. Here, we have uncovered a novel mechanism of primary resistance to FLT3 TKIs in AML: an FLT3 receptor harboring a nonjuxtamembrane ITD atypically integrating into the β-2 sheet of the first kinase domain (FLT3_ITD627E) induces dramatic up-regulation of the anti-apoptotic myeloid cell leukemia 1 protein (MCL-1). Using RNA…