0000000000134319

AUTHOR

Mauro Orlandini

0000-0003-0946-3151

showing 9 related works from this author

BeppoSAX observation of 4U 1907+09: Detection of a cyclotron line and its second harmonic

2000

Abstract We report the detection of a cyclotron absorption line and its second harmonic in the average spectrum of the high mass X-ray binary 4U1907+09 observed by the BeppoSAX satellite. The broad band spectral capability of BeppoSAX allowed a good determination of the continuum against which the two absorption features are evident at ∼ 19 and ∼ 39 keV. Correcting for the gravitational redshift of a ∼ 1.4 M⊙ neutron star, the inferred surface magnetic field strength is Bsurf = 2.1 × 1012 G.

PhysicsAtmospheric ScienceAstrophysics::High Energy Astrophysical PhenomenaCyclotronContinuum (design consultancy)Aerospace EngineeringAstronomy and AstrophysicsAstrophysicsSpectral linelaw.inventionMagnetic fieldNeutron starGeophysicsSpace and Planetary SciencelawGeneral Earth and Planetary SciencesAbsorption (electromagnetic radiation)Gravitational redshiftLine (formation)
researchProduct

BeppoSAX observation of the transient X-ray pulsar GS 1843+009

1999

Abstract The transient X-ray pulsar GS 1843+009 was observed by BeppoSAX satellite on 1997 April 4, while it was at flux level of 50 mCrab in the 20–200 keV energy band. Using the MECS and LECS concentrators, the source position was measured with unprecedented accuracy of 30. In this poster we present results on both spectral and temporal analysis.

PhysicsNuclear and High Energy PhysicsRadiation fluxPulsarAstronomyFluxSatelliteTransient (oscillation)AstrophysicsAtomic and Molecular Physics and OpticsParticle detectorSpectral lineX-ray pulsarNuclear Physics B - Proceedings Supplements
researchProduct

The Large Area Detector of LOFT: the Large Observatory for X-ray Timing

2014

LOFT (Large Observatory for X-ray Timing) is one of the five candidates that were considered by ESA as an M3 mission (with launch in 2022-2024) and has been studied during an extensive assessment phase. It is specifically designed to perform fast X-ray timing and probe the status of the matter near black holes and neutron stars. Its pointed instrument is the Large Area Detector (LAD), a 10 m 2 -class instrument operating in the 2-30keV range, which holds the capability to revolutionise studies of variability from X-ray sources on the millisecond time scales. The LAD instrument has now completed the assessment phase but was not down-selected for launch. However, during the assessment, most o…

[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Observatories ; Sensors ; X-rays ; Equipment and services ; X-ray sourcesComputer scienceObservatoriesFOS: Physical sciencesX-ray sources01 natural sciences7. Clean energyX-rayLoftObservatoryRange (aeronautics)0103 physical sciencesX-raysElectronicTimingOptical and Magnetic MaterialsElectrical and Electronic Engineering010306 general physicsInstrumentation and Methods for Astrophysics (astro-ph.IM)Compact Objects; Timing; X-ray; Electronic Optical and Magnetic Materials; Condensed Matter Physics; Computer Science Applications1707 Computer Vision and Pattern Recognition; Applied Mathematics; Electrical and Electronic EngineeringRemote sensingMillisecondEquipment and servicesCompact Objects010308 nuclear & particles physicsLarge area detectorSensorsApplied MathematicsComputer Science Applications1707 Computer Vision and Pattern RecognitionCondensed Matter Physics[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Neutron starAstrophysics - Instrumentation and Methods for Astrophysicsastro-ph.IM
researchProduct

Time domain astronomy with the THESEUS satellite

2021

THESEUS is a medium size space mission of the European Space Agency, currently under evaluation for a possible launch in 2032. Its main objectives are to investigate the early Universe through the observation of gamma-ray bursts and to study the gravitational waves electromagnetic counterparts and neutrino events. On the other hand, its instruments, which include a wide field of view X-ray (0.3-5 keV) telescope based on lobster-eye focussing optics and a gamma-ray spectrometer with imaging capabilities in the 2-150 keV range, are also ideal for carrying out unprecedented studies in time domain astrophysics. In addition, the presence onboard of a 70 cm near infrared telescope will allow simu…

010504 meteorology & atmospheric sciencesmedia_common.quotation_subjectAstronomyAstrophysics::High Energy Astrophysical PhenomenaSocio-culturaleFOS: Physical sciencesX-ray sources01 natural scienceslaw.inventionTelescopeX-ray sourceSettore FIS/05 - Astronomia E Astrofisicalaw0103 physical sciencesTime domain[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Variability010303 astronomy & astrophysicsInstrumentation and Methods for Astrophysics (astro-ph.IM)0105 earth and related environmental sciencesmedia_commonTime domain astronomyPhysicsSpectrometerGravitational waveX-rays surveysAstronomyAstronomy and AstrophysicsUniverseSpace and Planetary ScienceSatelliteNeutrinoAstrophysics - Instrumentation and Methods for AstrophysicsExperimental Astronomy
researchProduct

Sensitivity of the Cherenkov Telescope Array for probing cosmology and fundamental physics with gamma-ray propagation

2021

Full list of authors: Abdalla, H.; Abe, H.; Acero, F.; Acharyya, A.; Adam, R.; Agudo, I; Aguirre-Santaella, A.; Alfaro, R.; Alfaro, J.; Alispach, C.; Aloisio, R.; Batista, R. Alves; Amati, L.; Amato, E.; Ambrosi, G.; Anguner, E. O.; Araudo, A.; Armstrong, T.; Arqueros, F.; Arrabito, L.; Asano, K.; Ascasibar, Y.; Ashley, M.; Backes, M.; Balazs, C.; Balbo, M.; Balmaverde, B.; Baquero Larriva, A.; Martins, V. Barbosa; Barkov, M.; Baroncelli, L.; de Almeida, U. Barres; Barrio, J. A.; Batista, P-, I; Becerra Gonzalez, J.; Becherini, Y.; Beck, G.; Tjus, J. Becker; Belmont, R.; Benbow, W.; Bernardini, E.; Berti, A.; Berton, M.; Bertucci, B.; Beshley, V; Bi, B.; Biasuzzi, B.; Biland, A.; Bissaldi, …

Gamma ray AstronomyCherenkov Telescope ArrayaxionsMATÉRIA ESCURAredshift: dependenceAstronomyGamma ray experimentsgamma ray experimentsAstrophysics01 natural sciencesCosmologyObservatorycosmological model: parameter spacegamma ray experimentHigh Energy Astrophysical Phenomena (astro-ph.HE)astro-ph.HEPhysicsCherenkov telescopes ; IACT technique ; Gamma rays ; Cosmic raysnew physics4. EducationSettore FIS/01 - Fisica SperimentaleAstrophysics::Instrumentation and Methods for AstrophysicsGamma-ray astronomyviolation: Lorentz3. Good healthobservatoryExtragalactic background lightastro-ph.COaxion-like particlesFísica nuclearAstrophysics - High Energy Astrophysical PhenomenaAstrophysics - Cosmology and Nongalactic Astrophysicsgamma ray: propagationCosmology and Nongalactic Astrophysics (astro-ph.CO)Active galactic nucleusAxionsAstrophysics::High Energy Astrophysical PhenomenaDark matterFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic Astrophysicsinvariance: Lorentzjet: relativisticdark matter: halo0103 physical sciencesactive galactic nuclei; gamma ray experiments; axions; extragalactic magnetic fieldsAGNBlazarbackground010308 nuclear & particles physicsFísicaAstronomy and AstrophysicssensitivityCherenkov Telescope Arrayaxionextragalactic magnetic fieldsactive galactic nuclei[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]absorptionstatisticalBlazarsTelescopes
researchProduct

The Large Observatory For x-ray Timing

2014

The Large Observatory For x-ray Timing (LOFT) was studied within ESA M3 Cosmic Vision framework and participated in the final down-selection for a launch slot in 2022-2024. Thanks to the unprecedented combination of effective area and spectral resolution of its main instrument, LOFT will study the behaviour of matter under extreme conditions, such as the strong gravitational field in the innermost regions of accretion flows close to black holes and neutron stars, and the supra-nuclear densities in the interior of neutron stars. The science payload is based on a Large Area Detector (LAD, 10 m 2 effective area, 2-30 keV, 240 eV spectral resolution, 1 deg collimated field of view) and a WideFi…

x-ray and γ-ray instrumentationcompact objects; microchannel plates; X-ray detectors; X-ray imaging; X-ray spectroscopy; X-ray timing; Electronic Optical and Magnetic Materials; Condensed Matter Physics; Computer Science Applications1707 Computer Vision and Pattern Recognition; Applied Mathematics; Electrical and Electronic EngineeringVisionX-ray timingObservatoriesField of view01 natural sciences7. Clean energyneutron starsObservatory010303 astronomy & astrophysicsPhysicsEquipment and servicesApplied MathematicsAstrophysics::Instrumentation and Methods for AstrophysicsSteradian[ SDU.ASTR.IM ] Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Computer Science Applications1707 Computer Vision and Pattern RecognitionX-ray detectorsCondensed Matter Physicscompact objectsX-ray spectroscopyAstrophysics - Instrumentation and Methods for AstrophysicsX-ray detector[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Cosmic VisionSpectral resolutionmicrochannel platesAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesNOmicrochannel platecompact objects; microchannel plates; X-ray detectors; X-ray imaging; X-ray spectroscopy; X-ray timing; Electronic Optical and Magnetic Materials; Condensed Matter Physics; Applied Mathematics; Electrical and Electronic EngineeringSettore FIS/05 - Astronomia e AstrofisicaX-rayscompact object0103 physical sciencesElectronicOptical and Magnetic MaterialsElectrical and Electronic EngineeringSpectral resolutionInstrumentation and Methods for Astrophysics (astro-ph.IM)dense hadronic matterSensors010308 nuclear & particles physicsX-ray imagingAstronomyAccretion (astrophysics)[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Neutron star13. Climate actionx-ray and γ-ray instrumentation; neutron stars; dense hadronic matter[ PHYS.ASTR.IM ] Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Gamma-ray burstastro-ph.IM
researchProduct

A deep study of the high–energy transient sky

2021

This is an open access article. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds t…

Electromagnetic spectrumESA voyage 2050; High-energy transient sky; Multi-messenger astrophysics; Space mission concept; X–/γ–ray polarimetry; X–/γ–ray telescopes01 natural sciences7. Clean energylaw.inventionSettore FIS/05 - Astronomia E AstrofisicalawNuclear astrophysicsoptical010303 astronomy & astrophysicsmedia_commonPhysicsdensityStrong gravityAstrophysics::Instrumentation and Methods for AstrophysicsnucleosynthesisimagingParticle accelerationHigh-energy transient skyNeutrinoburstparticlelensmedia_common.quotation_subjectAstrophysics::High Energy Astrophysical PhenomenainterferometerSpace mission conceptTelescope0103 physical sciencesTeVequation of statepolarization010308 nuclear & particles physicsGravitational wavenucleusgravitational radiationAmbientaleAstronomyAstronomy and AstrophysicsaccelerationsensitivityMulti-messenger astrophysicsUniversemonitoringelectromagneticX–/γ–ray telescopesangular resolution[SDU]Sciences of the Universe [physics]13. Climate actionSpace and Planetary Sciencegamma raygravitationX–/γ–ray polarimetry[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]ESA voyage 2050
researchProduct

Observatory science with eXTP

2019

Disponible preprint en: arXiv:1812.04023v1 [astro-ph.HE] [v1] Mon, 10 Dec 2018 19:00:52 UTC (4,376 KB)

cataclysmic binariesAstronomyFIELD CAMERAS OBSERVATIONSspace research instruments nuclear astrophysics flare stars accretion and accretion disks mass loss and stellar winds cataclysmic binaries X-ray binaries supernova remnants active galactic nuclei X-ray bursts gamma-ray bursts gravitational wavesGeneral Physics and Astronomygamma-ray burstspace research instrument01 natural sciencesGamma ray burstsObservatoryAccretion and accretion disksAstrophysics::Solar and Stellar Astrophysics010303 astronomy & astrophysicsgravitational waveaccretion and accretion diskPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)supernova remnants[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph][SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]flare starsgamma-ray burstsAstrophysics::Instrumentation and Methods for Astrophysicsaccretion and accretion disks; active galactic nuclei; cataclysmic binaries; flare stars; gamma-ray bursts; gravitational waves; mass loss and stellar winds; nuclear astrophysics; space research instruments; supernova remnants; X-ray binaries; X-ray bursts; Physics and Astronomy (all)Space research instrumentsX ray burstSupernovaX-ray binariesgravitational wavesaccretion and accretion disksQUIETHigh massX-ray binarieMass loss and stellar windsNuclear astrophysicsGamma-ray burstsspace research instrumentsAstrophysics - High Energy Astrophysical PhenomenaPULSAR-WIND NEBULAEFAST RADIO-BURSTSAstrofísica nuclearActive galactic nucleusTIDAL DISRUPTIONSupernova remnantsAstrophysics::High Energy Astrophysical Phenomenanuclear astrophysicsPolarimetryFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic AstrophysicsACCRETING NEUTRON-STARSaccretion and accretion disks; active galactic nuclei; cataclysmic binaries; flare stars; gamma-ray bursts; gravitational waves; mass loss and stellar winds; nuclear astrophysics; space research instruments; supernova remnants; X-ray binaries; X-ray burstsGravitational wavesPhysics and Astronomy (all)cataclysmic binarieSettore FIS/05 - Astronomia e AstrofisicaSUPERMASSIVE BLACK-HOLES0103 physical sciences010306 general physicsX-ray burstAstrophysics::Galaxy AstrophysicsCataclysmic binariesActive galactic nucleiflare starAstronomyWhite dwarfFlare starsStarssupernova remnantQB460-466 Astrophysics[SDU]Sciences of the Universe [physics]mass loss and stellar wind:Física::Astronomia i astrofísica [Àrees temàtiques de la UPC]active galactic nucleiX-RAYX-ray burstsSupernova remmantsmass loss and stellar windsX ray binaries[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]SEYFERT 1 GALAXYnuclear astrophysic
researchProduct

The THESEUS space mission concept: science case, design and expected performances

2018

THESEUS is a space mission concept aimed at exploiting Gamma-Ray Bursts for investigating the early Universe and at providing a substantial advancement of multi-messenger and time-domain astrophysics. These goals will be achieved through a unique combination of instruments allowing GRB and X-ray transient detection over a broad field of view (more than 1sr) with 0.5¿1 arcmin localization, an energy band extending from several MeV down to 0.3¿keV and high sensitivity to transient sources in the soft X-ray domain, as well as on-board prompt (few minutes) follow-up with a 0.7¿m class IR telescope with both imaging and spectroscopic capabilities. THESEUS will be perfectly suited for addressing …

IonizationAtmospheric Sciencecosmological modelCherenkov Telescope Array[ PHYS.ASTR ] Physics [physics]/Astrophysics [astro-ph]AstronomyDark ageMASSIVE SINGLE STARSStar formation rates Gamma ray01 natural sciencesCosmology: observationlocalizationlaw.inventionAstrophysicEinstein Telescopeobservational cosmologylawObservational cosmologyRe-ionizationCosmology: observations; Dark ages; First stars; Gamma-ray: bursts; Re-ionizationLIGOobservations [Cosmology]Telescope010303 astronomy & astrophysicsHigh sensitivityHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsMulti-wavelengthenergy: highsezelegamma-ray burstsCosmology: observationsCosmology: observations; Dark ages; First stars; Gamma-ray: bursts; Re-ionization; Aerospace Engineering; Space and Planetary ScienceAstrophysics::Instrumentation and Methods for Astrophysicsimagingstar: formationburst [Gamma-ray]observatoryGeophysicsDark agesX rays Cosmology: observationAstrophysics - Instrumentation and Methods for AstrophysicsAstrophysics - High Energy Astrophysical PhenomenasignatureStarTIDAL DISRUPTIONGamma-ray: burstAstrophysics::High Energy Astrophysical PhenomenaSIMILAR-TO 6Socio-culturaleFOS: Physical sciencesAerospace EngineeringGamma-ray: burstsobservation [Cosmology]galaxy: luminosityX-ray astronomy: instrumentation7 CANDIDATE GALAXIESAstrophysics::Cosmology and Extragalactic Astrophysicsgamma ray: burst114 Physical sciencesSettore FIS/03 - Fisica della MateriaTelescopeX-raybursts [Gamma-ray]FIS/05 - ASTRONOMIA E ASTROFISICASettore FIS/05 - Astronomia e AstrofisicaFirst star0103 physical sciences[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]KAGRAInstrumentation and Methods for Astrophysics (astro-ph.IM)Astrophysics::Galaxy AstrophysicsFirst starsLIGHT CURVESEinstein Telescope010308 nuclear & particles physicsGravitational wavegravitational radiationAstronomyAstronomy and Astrophysics115 Astronomy Space scienceCherenkov Telescope ArrayredshiftsensitivityRedshiftNEUTRON-STAR MERGERmessengerVIRGOelectromagneticLUMINOSITY FUNCTIONSpace and Planetary ScienceBLACK-HOLEGeneral Earth and Planetary SciencesGamma-ray burst[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct