0000000000134471

AUTHOR

P. Grima

Investigation of conduction-band structure, electron-scattering mechanisms, and phase transitions in indium selenide by means of transport measurements under pressure

In this work we report on Hall effect, resistivity and thermopower measurements in n-type indium selenide at room temperature under either hydrostatic and quasi-hydrostatic pressure. Up to 40 kbar (= 4 GPa), the decrease of carrier concentration as the pressure increases is explained through the existence of a subsidiary minimum in the conduction band. This minimum shifts towards lower energies under pressure, with a pressure coefficient of about -105 meV/GPa, and its related impurity level traps electrons as it reaches the band gap and approaches the Fermi level. The pressure value at which the electron trapping starts is shown to depend on the electron concentration at ambient pressure an…

research product

Effects of Conduction Band Structure and Dimensionality of the Electron Gas on Transport Properties of InSe under Pressure

We report Hall effect and resistivity measurements in InSe under pressure. The electron concentration strongly decreases under pressure in samples exhibiting 3D transport behaviour. This is explained by the existence of an excited minimum in the conduction band moving to lower energies under pressure. The related impurity level traps electrons as it reaches the band gap and approaches the Fermi level. In samples exhibiting 2D behaviour the electron concentration remains constant. This behaviour, together with the pressure dependence of the Hall mobility, is consistent with a previous model which considers high mobility 3D electrons and low mobility 2D electrons to contribute to charge trans…

research product