0000000000135022

AUTHOR

Pedro Pérez-borredá

showing 3 related works from this author

Ultrastructural characterization of human oligodendrocytes and their progenitor cells by pre-embedding immunogold.

2021

Oligodendrocytes are the myelinating cells of the central nervous system. They provide trophic, metabolic, and structural support to neurons. In several pathologies such as multiple sclerosis (MS), these cells are severely affected and fail to remyelinate, thereby leading to neuronal death. The gold standard for studying remyelination is the g-ratio, which is measured by means of transmission electron microscopy (TEM). Therefore, studying the fine structure of the oligodendrocyte population in the human brain at different stages through TEM is a key feature in this field of study. Here we study the ultrastructure of oligodendrocytes, its progenitors, and myelin in 10 samples of human white …

0301 basic medicineBioquímicaCell typehuman oligodendrocytesPopulationNeuroscience (miscellaneous)oligodendrocytesNeurosciences. Biological psychiatry. NeuropsychiatryBiologyOPCsWhite matterOLIG203 medical and health sciencesCellular and Molecular NeuroscienceMyelin0302 clinical medicinetransmission electron microscopymedicineBCAS1RemyelinationeducationOriginal Researcheducation.field_of_studyQM1-695Immunogold labellingOligodendrocyteCell biologyimmunogold030104 developmental biologymedicine.anatomical_structurenervous systemHuman anatomyAnatomy030217 neurology & neurosurgeryRC321-571Neuroscience
researchProduct

Wnt-Dependent Oligodendroglial-Endothelial Interactions Regulate White Matter Vascularization and Attenuate Injury

2020

Recent studies have indicated oligodendroglial-vascular crosstalk during brain development, but the underlying mechanisms are incompletely understood. We report that oligodendrocyte precursor cells (OPCs) contact sprouting endothelial tip cells in mouse, ferret and human neonatal white matter. Using transgenic mice, we show that increased or decreased OPC density results in cognate changes in white matter vascular investment. Hypoxia promoted both increased OPC numbers and higher white matter vessel density, and endothelial cell expression of the Wnt pathway targets Apcdd1 and Axin2, suggesting paracrine OPC-endothelial signaling. Conditional knockout of OPC Wntless resulted in diminished w…

0301 basic medicineGenetically modified mouseoligodendrocytesMice TransgenicBiologyArticleWhite matter03 medical and health sciencesParacrine signallingMice0302 clinical medicinetip cell angiogenesisAxin ProteinConditional gene knockoutmedicineAXIN2AnimalsHumanshypoxic-ischemic encephalopathyHypoxiaWnt Signaling PathwayGeneral NeuroscienceWnt signaling pathwayFerretsIntracellular Signaling Peptides and ProteinsEndothelial CellsMembrane ProteinsCell DifferentiationHypoxia (medical)Wnt signalingWhite Matter3. Good healthCell biologyEndothelial stem cellstomatognathic diseasesOligodendroglia030104 developmental biologymedicine.anatomical_structurenervous systemEndothelium Vascularmedicine.symptom030217 neurology & neurosurgeryNeuron
researchProduct

Tyramide Signal Amplification for Immunoelectron Microscopy

2021

ChemistryImmunoelectron microscopyMolecular biologySignal amplification
researchProduct