0000000000135183

AUTHOR

J. F. Albacete-colombo

showing 4 related works from this author

AE Aurigae: First detection of non-thermal X-ray emission from a bow shock produced by a runaway star

2012

Runaway stars produce shocks when passing through interstellar medium at supersonic velocities. Bow shocks have been detected in the mid-infrared for several high-mass runaway stars and in radio waves for one star. Theoretical models predict the production of high-energy photons by non-thermal radiative processes in a number sufficiently large to be detected in X-rays. To date, no stellar bow shock has been detected at such energies. We present the first detection of X-ray emission from a bow shock produced by a runaway star. The star is AE Aur, which was likely expelled from its birthplace due to the encounter of two massive binary systems and now is passing through the dense nebula IC 405…

Shock waveAstrofísicaCiencias Astronómicasstars: kinematics and dynamicsAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsX-rays: generalISM: cloudsmassive [stars]general [X-rays]Radiative transferISM: clouds radiation mechanisms: non-thermal stars: individual: AE Aur stars: kinematics and dynamics stars: massive X-rays: generalAstrophysics::Solar and Stellar AstrophysicsBow shock (aerodynamics)kinematics and dynamics [stars]Solar and Stellar Astrophysics (astro-ph.SR)Astrophysics::Galaxy AstrophysicsCosmic dustPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)NebulaAstronomy and Astrophysicsradiation mechanisms: non-thermalnon-thermal [radiation mechanisms]Astrophysics - Astrophysics of GalaxiesInterstellar mediumAstronomíastars: individual (AE Aur)stars: massiveStarsindividual (AE Aur) [stars]Astrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceAstrophysics of Galaxies (astro-ph.GA)Astrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical Phenomenaclouds [ISM]Radio wave
researchProduct

X-ray emission from stellar jets by collision against high-density molecular clouds: an application to HH 248

2015

We investigate the plausibility of detecting X-ray emission from a stellar jet that impacts against a dense molecular cloud. This scenario may be usual for classical T Tauri stars with jets in dense star-forming complexes. We first model the impact of a jet against a dense cloud by 2D axisymmetric hydrodynamic simulations, exploring different configurations of the ambient environment. Then, we compare our results with XMM-Newton observations of the Herbig-Haro object HH 248, where extended X-ray emission aligned with the optical knots is detected at the edge of the nearby IC 434 cloud. Our simulations show that a jet can produce plasma with temperatures up to 10 MK, consistent with producti…

AstrofísicaHERBIGHARO OBJECTSJETS AND OUTFLOWS [ISM]Astrophysics::High Energy Astrophysical PhenomenaRotational symmetryFOS: Physical sciencesCloud computingAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsISM [X-RAYS]Space (mathematics)LuminosityHYDRODYNAMICS//purl.org/becyt/ford/1 [https]INDIVIDUAL OBJECTS (HH 248) [ISM]hydrodynamics Herbig-Haro objects ISM: individual objects: HH 248 ISM: jets and outflows X-rays: ISMAstrophysics::Galaxy AstrophysicsSolar and Stellar Astrophysics (astro-ph.SR)PhysicsJet (fluid)business.industryMolecular cloudAstronomy and Astrophysics//purl.org/becyt/ford/1.3 [https]PlasmaAstronomíaT Tauri starAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceHerbig–Haro objectsbusiness
researchProduct

An X-ray characterization of the central region of the supernova remnant G332.5-5.6

2015

Aims. We present an X-ray analysis of the central region of supernova remnant (SNR) G332.5-5.6 through an exhaustive analysis of XMM-Netwon observations with complementary infrared observations. We characterize and discuss the origin of the observed X-ray morphology, which presents a peculiar plane edge over the west side of the central region. Methods. The morphology and spectral properties of the X-ray SNR were studied using a single full frame XMM-Netwon observation in the 0.3 to 10.0 keV energy band. Archival infrared WISE observations at 8, 12 and 24 μm were also used to investigate the properties of the source and its surroundings at different wavelengths. Results. The results show th…

individual objects: G332.5-5.6 [ISM]Ciencias AstronómicasISM: individual objects: G332.5-5.6InfraredSupernova remnantsCiencias FísicasAstrophysics::High Energy Astrophysical PhenomenaAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsRadiation//purl.org/becyt/ford/1 [https]Interstellar mediumIonizationX-raysRadiation mechanismsISM [X-rays]Supernova remnantCiencias Exactas y NaturalesAstrophysics::Galaxy AstrophysicsG332.5-5.6 (ISM individual objects)ISM: supernova remnantsPhysicssupernova remnants [ISM]Atomic emission spectroscopyAstronomy and AstrophysicsPlasma//purl.org/becyt/ford/1.3 [https]Thermal mechanismsRadiation mechanisms: thermalX-rays: ISMInterstellar mediumISM: individual objects: G332.5-5.6 ISM: supernova remnants X-rays: ISM radiation mechanisms: thermalAstronomíaWavelengthSpace and Planetary Sciencethermal [Radiation mechanisms]CIENCIAS NATURALES Y EXACTAS
researchProduct

EVIDENCE OF NON-THERMAL X-RAY EMISSION FROM HH 80

2013

Protostellar jets appear at all stages of star formation when the accretion process is still at work. Jets travel at velocities of hundreds of km s -1, creating strong shocks when interacting with the interstellar medium. Several cases of jets have been detected in X-rays, typically showing soft emission. For the first time, we report evidence of hard X-ray emission possibly related to non-thermal processes not explained by previous models of the post-shock emission predicted in the jet/ambient interaction scenario. HH 80 is located at the south head of the jet associated with the massive protostar IRAS 18162-2048. It shows soft and hard X-ray emission in regions that are spatially separate…

AstrofísicaCiencias AstronómicasCiencias FísicasAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesSynchrotron radiationAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicsIndividual: Iras 18162-2048 [Stars]//purl.org/becyt/ford/1 [https]Herbig-Haro objects ISM: jets and outflows radiation mechanisms: non-thermal stars: individual: IRAS 18162-2048 stars: pre-main sequence X-rays: generalHigh Energy Physics - Phenomenology (hep-ph)Herbig-Haro objectsGeneral [X-Rays]jets and outflows radiation mechanisms: non-thermal stars: individual: IRAS 18162-2048 stars: pre-main sequence X-rays: general [Herbig-Haro objects ISM]Jets And Outflows [Ism]ThermalProtostarstars: individualAstrophysics::Galaxy AstrophysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsStar formationX-rayAstronomy and Astrophysics//purl.org/becyt/ford/1.3 [https]radiation mechanisms: non-thermalHerbig-Haro ObjectsAstrophysics - Astrophysics of GalaxiesAccretion (astrophysics)Non-Thermal [Radiation Mechanisms]AstronomíaInterstellar mediumHigh Energy Physics - PhenomenologyISM: jets and outflowsSpace and Planetary ScienceAstrophysics of Galaxies (astro-ph.GA)Astrophysics - High Energy Astrophysical PhenomenaCIENCIAS NATURALES Y EXACTASThe Astrophysical Journal
researchProduct