0000000000135496

AUTHOR

H. Lenske

The NUMEN project @ LNS: Status and perspectives

The NUMEN project aims at accessing experimentally driven information on Nuclear Matrix Elements (NME) involved in the half-life of the neutrinoless double beta decay (0νββ), by high-accuracy measurements of Heavy Ion (HI) induced Double Charge Exchange (DCE) reaction cross sections. In particular, the (18O,18Ne) and (20Ne,20O) reactions are used as tools for β+β+ and β−β− decays, respectively. In the experiments, performed at INFN - Laboratory Nazionali del Sud (LNS) in Catania, the beams are accelerated by the Superconducting Cyclotron (CS) and the reaction ejectiles are detected the MAGNEX magnetic spectrometer. The measured cross sections are challengingly low (a few nb), being the tota…

research product

Exploring the 10Li structure by the d(9Li,p)10Li transfer reaction

The 9Li + 2H reaction has been investigated at 11 AMeV incident energy at the ISAC II facility (TRIUMF). In the present paper we focus on the one-neutron transfer channel, which potentially holds spectroscopic information on the unbound nucleus 10Li. The TUDA setup has been used in order to detect and identify the outgoing 9Li at forward angles and the recoil protons at backward angles. This setup allows to study the 10Li emitted in the crucial region at forward angles in the center of mass.

research product

Recent results on heavy-ion direct reactions of interest for 0νββ decay at INFN - LNS

Abstract Neutrinoless double beta decay of nuclei, if observed, would have important implications on fundamental physics. In particular it would give access to the effective neutrino mass. In order to extract such information from 0νββ decay half-life measurements, the knowledge of the Nuclear Matrix Elements (NME) is of utmost importance. In this context the NUMEN and the NURE projects aim to extract information on the NME by measuring cross sections of Double Charge Exchange reactions in selected systems which are expected to spontaneously decay via 0νββ. In this work an overview of the experimental challenges that NUMEN is facing in order to perform the experiments with accelerated beams…

research product

Coulomb breakup of 23O

Abstract The ground-state structure of the near-drip-line nucleus 23O has been investigated in a one-neutron Coulomb breakup reaction. Differential cross sections d σ / d E * for electromagnetic excitation of 23O projectiles (422 MeV/nucleon) incident on a lead target have been obtained from the measurement of the momenta of all breakup products including γ rays. The analysis of the deduced dipole-transition probability into the continuum infers a 2 s 1 / 2 ⊗ O 22 ( 0 + ) ground state configuration with a spectroscopic factor of 0.77(10) and thus a ground-state spin I π ( O 23 ) = 1 / 2 + , resolving earlier conflicting experimental findings. Final-state interaction is of significant influe…

research product

Investigation of the Li9+H2→Li8+t reaction at REX-ISOLDE

The one-neutron transfer reaction Li-9 + H-2 -> Li-8 + t has been investigated in an inverse kinematics experiment by bombarding a deuterated polypropylene target with a 2.36 MeV/u Li-9 beam from the post-accelerator REX-ISOLDE at CERN. Excitation energies in Li-8 as well as angular distributions of the tritons were obtained and spectroscopic factors deduced. (c) 2006 Elsevier B.V. All rights reserved.

research product

The electronion scattering experiment ELISe at the International Facility for Antiproton and Ion Research (FAIR) - A conceptual design study

The electronion scattering experiment ELISe is part of the installations envisaged at the new experimental storage ring at the International Facility for Antiproton and Ion Research (FAIR) in Darmstadt, Germany. It offers an unique opportunity to use electrons as probe in investigations of the structure of exotic nuclei. The conceptual design and the scientific challenges of ELISe are presented. © 2011 Elsevier B.V. All rights reserved.

research product

Invariant-mass spectroscopy of $^{10}$Li and $^{11}$Li

Break-up of secondary Li-11 ion beams (280 MeV/nucleon) on C and Pb targets into Li-9 and neutrons is studied experimentally. Cross sections and neutron multiplicity distributions are obtained, characterizing different reaction mechanisms. Invariant-mass spectroscopy for Li-11 and Li-10 is performed. The E1 strength distribution, deduced from electromagnetic excitation of Li-11 up to an excitation energy of 4 MeV comprises similar to 8% of the Thomas-Reiche-Kuhn energy-weighted sumrule strength. Two low-lying resonance-like structures are observed for Li-10 at decay energies of 0.21(5) and 0.62(10) MeV, the former one carrying 26(10)% of the strength and likely to be associated with an s-wa…

research product

10Li low-lying resonances populated by one-neutron transfer

The 9Li + 2H → 10Li + 1H one-neutron transfer reaction has been performed at 100 MeV incident energy at TRIUMF using a 9Li beam delivered by the ISAC-II facility. A setup based on double-sided silicon strip detectors has been used in order to detect and identify the outgoing 9Li produced by the 10Li breakup at forward angles and the recoil protons emitted at backward angles. The 10Li low-lying resonances, whose energies, widths and configurations are still unclear, have been populated with significant statistics.

research product