0000000000135560
AUTHOR
K.t. Flanagan
Isomer shift and magnetic moment of the long-lived 1/2$^{+}$ isomer in $^{79}_{30}$Zn$_{49}$: signature of shape coexistence near $^{78}$Ni
Collinear laser spectroscopy has been performed on the $^{79}_{30}$Zn$_{49}$ isotope at ISOLDE-CERN. The existence of a long-lived isomer with a few hundred milliseconds half-life was confirmed, and the nuclear spins and moments of the ground and isomeric states in $^{79}$Zn as well as the isomer shift were measured. From the observed hyperfine structures, spins $I = 9/2$ and $I = 1/2$ are firmly assigned to the ground and isomeric states. The magnetic moment $\mu$ ($^{79}$Zn) = $-$1.1866(10) $\mu_{\rm{N}}$, confirms the spin-parity $9/2^{+}$ with a $\nu g_{9/2}^{-1}$ shell-model configuration, in excellent agreement with the prediction from large scale shell-model theories. The magnetic mo…
Dipole and quadrupole moments of $^{73-78}$Cu as a test of the robustness of the $Z=28$ shell closure near $^{78}$Ni
Nuclear spins and precise values of the magnetic dipole and electric quadrupole moments of the ground states of neutron-rich Cu73–78 isotopes were measured using the Collinear Resonance Ionization Spectroscopy (CRIS) experiment at the CERN On-Line Isotope Mass Separator (ISOLDE) facility. The nuclear moments of the less exotic Cu73,75 isotopes were remeasured with similar precision, yielding values that are consistent with earlier measurements. The moments of the odd-odd isotopes, and 2978Cu (N=49) in particular, are used to investigate excitations of the assumed doubly magic Ni78 core through comparisons with large-scale shell-model calculations. Despite the narrowing of the Z=28 shell gap…
Electromagnetic moments of scandium isotopes and $N=28$ isotones in the distinctive $0f_{7/2}$ orbit
The electric quadrupole moment of $^{49}$Sc was measured by collinear laser spectroscopy at CERN-ISOLDE to be $Q_{\rm s}=-0.159(8)$ $e$b, and a nearly tenfold improvement in precision was reached for the electromagnetic moments of $^{47,49}$Sc. The single-particle behavior and nucleon-nucleon correlations are investigated with the electromagnetic moments of $Z=21$ isotopes and $N=28$ isotones as valence neutrons and protons fill the distinctive $0f_{7/2}$ orbit, respectively, located between magic numbers, 20 and 28. The experimental data are interpreted with shell-model calculations using an effective interaction, and ab-initio valence-space in-medium similarity renormalization group calcu…