0000000000135741
AUTHOR
Fritz Mayr
Improving Small Molecule pKa Prediction Using Transfer Learning With Graph Neural Networks
Enumerating protonation states and calculating microstate pKa values of small molecules is an important yet challenging task for lead optimization and molecular modeling. Commercial and non-commercial solutions have notable limitations such as restrictive and expensive licenses, high CPU/GPU hour requirements, or the need for expert knowledge to set up and use. We present a graph neural network model that is trained on 714,906 calculated microstate pKa predictions from molecules obtained from the ChEMBL database. The model is fine-tuned on a set of 5,994 experimental pKa values significantly improving its performance on two challenging test sets. Combining the graph neural network model wit…
On-Capillary Surface-Enhanced Raman Spectroscopy: Determination of Glutathione in Whole Blood Microsamples.
Oxidative stress monitoring in the neonatal period supports early outcome prediction and treatment. Glutathione (GSH) is the most abundant antioxidant in most cells and tissues, including whole blood, and its usefulness as a biomarker has been known for decades. To date, the available methods for GSH determination require laborious sample processing and the use of sophisticated laboratory equipment. To the best of our knowledge, no tools suitable for point-of-care (POC) sensing have been reported. Surface-enhanced Raman spectroscopy (SERS), performed in a microvolume capillary measurement cell, is proposed in this study as a robust approach for the quantification of GSH in human whole blood…