0000000000135831

AUTHOR

Steven Bos

A comparison between a two feedback control loop and a reinforcement learning algorithm for compliant low-cost series elastic actuators

Highly-compliant elastic actuators have become progressively prominent over the last years for a variety of robotic applications. With remarkable shock tolerance, elastic actuators are appropriate for robots operating in unstructured environments. In accordance with this trend, a novel elastic actuator was recently designed by our research group for Serpens, a low-cost, open-source and highly-compliant multi-purpose modular snake robot. To control the newly designed elastic actuators of Serpens, a two-feedback loops position control algorithm was proposed. The inner controller loop is implemented as a model reference adaptive controller (MRAC), while the outer control loop adopts a fuzzy pr…

research product

uMemristorToolbox: Open source framework to control memristors in Unity for ternary applications

This paper presents uMemristorToolbox, a novel open source framework that reads and writes non-volatile ternary states to memristors. The Unity (C#) framework is a port of the open source Java project Memristor-Discovery and adds a closed-loop ternary memory controller to enable both PC and real-time embedded ternary applications. We validate the closed-loop ternary memory controller in an embedded system case study with 16 M+SDC Tungsten dopant memristors. We measure an average switching speed of 3 Hz, worst case energy usage of 1 μW per switch, 0.03% random write error and no decay in (non-volatile) state retention after 15 minutes. We conclude with observations and open questions when wo…

research product