0000000000135982

AUTHOR

Salvatore Galati

0000-0002-2062-166x

Nitric oxide modulation of the basal ganglia circuitry: therapeutic implication for Parkinson's disease and other motor disorders.

Several recent studies have emphasized a crucial role for the nitrergic system in movement control and the pathophysiology of the basal ganglia (BG). These observations are supported by anatomical evidence demonstrating the presence of nitric oxide synthase (NOS) in all the basal ganglia nuclei. In fact, nitrergic terminals have been reported to make synaptic contacts with both substantia nigra dopamine-containing neurons and their terminal areas such as the striatum, the globus pallidus and the subthalamus. These brain areas contain a high expression of nitric oxide (NO)-producing neurons, with the striatum having the greatest number, together with important NO afferent input. In this pape…

research product

High dose of 8-OH-DPAT decreases maximal dentate gyrus activation and facilitates granular cell plasticity in vivo.

Although several studies have emphasized a crucial role for the serotonergic system in the control of hippocampal excitability, the role of serotonin (5-HT) and its receptors in normal and pathologic conditions, such as temporal lobe epilepsy (TLE), is still unclear. The present study was therefore designed firstly to investigate the acute effect of 8-OH-DPAT, a mixed 5-HT1A/7 receptor agonist, at a high dose (1 mg/kg, i.p.) known to have antiepileptic properties, in a model of acute partial epilepsy in rats. For this purpose, a maximal dentate activation (MDA) protocol was used to measure electrographic seizure onset and duration. In addition, the effect of 8-OH-DPAT on in vivo dentate gyr…

research product

Acute inactivation of the medial forebrain bundle imposes oscillations in the SNr: a challenge for the 6-OHDA model?

It has been recently shown that the substantia nigra pars reticulata (SNr) of 6-hydroxydopamine (6-OHDA)-lesioned rats, under urethane anaesthesia, manifests a prominent low frequency oscillation (LFO) of around 1Hz, synchronized with cortical slow wave activity (SWA). Nevertheless, it is poorly understood whether these electrophysiological alterations are correlated only with severe dopamine depletion or may also play a relevant pathogenetic role in the early stages of the dopamine denervation. Hence, here we recorded SNr single units and electrocorticogram (ECoG) in two models of dopamine denervation: (i) acute dopamine denervated rats, obtained by injection of tetrodotoxin (TTX), (ii) ch…

research product