0000000000136123

AUTHOR

Ulrich Dünzinger

Conserved synteny of mammalian imprinted genes in chicken, frog, and fish genomes

Conservation of synteny of mammalian imprinted genes between chicken and human suggested that highly conserved gene clusters were selected long before these genes were recruited for genomic imprinting in mammals. Here we have applied in silico mapping of orthologous genes in pipid frog, zebrafish, spotted green and Japanese pufferfish to show considerable conservation of synteny in lower vertebrates. More than 400 million years ago in a common ancestor of teleost fish and tetrapods, ‘preimprinted’ chromosome regions homologous to human 6q25, 7q21, 7q32, 11p15, and 15q11→q12 already contained most present-day mammalian imprinted genes. Interestingly, some imprinted gene orthologues which are…

research product

Expression profiling of uniparental mouse embryos is inefficient in identifying novel imprinted genes

AbstractImprinted genes are expressed from only one allele in a parent-of-origin-specific manner. We here describe a systematic approach to identify novel imprinted genes using quantification of allele-specific expression by Pyrosequencing, a highly accurate method to detect allele-specific expression differences. Sixty-eight candidate imprinted transcripts mapping to known imprinted chromosomal regions were selected from a recent expression profiling study of uniparental mouse embryos and analyzed. Three novel imprinted transcripts encoding putative non-protein-coding RNAs were identified on the basis of parent-of-origin-specific monoallelic expression in E11.5 (C57BL/6 × Cast/Ei)F1 and in…

research product

Chicken orthologues of mammalian imprinted genes are clustered on macrochromosomes and replicate asynchronously.

In the chicken genome, most orthologues of mouse imprinted genes are clustered on macrochromosomes. Only a few orthologues are located in the microchromosome complement. Macrochromosomal and, to a lesser extent, microchromosomal regions containing imprinted gene orthologues exhibit asynchronous DNA replication. We conclude that highly conserved arrays of imprinted gene orthologues were selected during vertebrate evolution, long before these genes were recruited for parent-specific gene expression by genomic imprinting mechanisms. Evidently, the macrochromosome complement provides a better chromatin environment for the establishment of asynchronous DNA replication and imprinted gene expressi…

research product