0000000000136166
AUTHOR
Giacomo Aiello
Thermo-mechanical analyses and ways of optimization of the helium cooled DEMO First Wall under RCC-MRx rules
Abstract The EUROfusion Consortium develops a design of a fusion power demonstrator plant (DEMO) in the framework of the European “Horizon 2020” innovation and research program. One of the key components in the fusion reactor is the Breeding Blanket (BB) surrounding the plasma, ensuring tritium self-sufficiency, heat removal for conversion into electricity, and neutron shielding. Among the 4 candidates for the DEMO BB, 2 of them use helium as coolant (HCPB, HCLL), and another one (DCLL) uses helium to cool down the First Wall (FW) only. Due to uncertainties regarding the plasma Heat Flux (HF) load the DEMO BB integrated FW will have to cope with, a set of sensitive thermal and stress analys…
Thermal optimization of the Helium-Cooled Lithium Lead breeding zone layout design regarding TBR enhancement
Abstract Within the framework of EUROfusion R&D activities, CEA-Saclay has carried out an investigation of the thermal and mechanical performances of alternative designs intended to enhance the Tritium Breeding Ratio (TBR) of the Helium-Cooled Lithium Lead (HCLL) Breeding Blanket (BB) for DEMO. Neutronic calculations performed on the 2014 DEMO HCLL baseline predicted a value of TBR equal to 1.07, lower than the required value of 1.1, necessary to ensure the tritium self-sufficiency of the breeding blanket taking into account uncertainties. In order to reach the TBR target, the strategy of the steel amount reduction inside the HCLL module breeding zone (BZ) has been followed by suppressing s…
Status of the EU DEMO HCLL breeding blanket design development
International audience; In the framework of the European “HORIZON 2020” innovation and research programme, the EUROfusion Consortium develops a design of a fusion power demonstrator (DEMO). One of the key components in the fusion reactor is the Breeding Blanket (BB) surrounding the plasma, ensuring tritium self-sufficiency, heat removal for conversion into electricity, and neutron shielding. CEA-Saclay, with the support of Wigner-RCP and Centrum výzkumu Řež, is in charge of the development of one of the four BB concepts investigated in Europe for DEMO: the Helium Cooled Lithium Lead (HCLL) BB. The rationales of the HCLL are the use of Eurofer as structural material, eutectic liquid lithium-…
On the use of tin–lithium alloys as breeder material for blankets of fusion power plants
Abstract Tin–lithium alloys have several attractive thermo-physical properties, in particular high thermal conductivity and heat capacity, that make them potentially interesting candidates for use in liquid metal blankets. This paper presents an evaluation of the advantages and drawbacks caused by the substitution of the currently employed alloy lead–lithium (Pb–17Li) by a suitable tin–lithium alloy: (i) for the European water-cooled Pb–17Li (WCLL) blanket concept with reduced activation ferritic–martensitic steel as the structural material; (ii) for the European self-cooled TAURO blanket with SiCf/SiC as the structural material. It was found that in none of these blankets Sn–Li alloys woul…
Progress in EU Breeding Blanket design and integration
Abstract In Europe (EU), in the frame of the EUROfusion consortium activities, four Breeding Blanket (BB) concepts are being developed with the aim of fulfilling the performances required by a near-term fusion power demonstration plant (DEMO) in terms of tritium self-sufficiency and electricity production. The four blanket options cover a wide range of technological possibilities, as water and helium are considered as possible coolants and solid ceramic breeder in combination with beryllium and PbLi as tritium breeder and neutron multipliers. The strategy for the BB selection and operation has to account for the challenging schedule of the EU DEMO, the ambitious operational requirements of …
Development of helium coolant DEMO first wall model for SYCOMORE system code based on HCLL concept
Abstract The conceptual design of the demonstration fusion power reactor, known as DEMO, is ongoing and several reactor configurations have to be investigated by exploring different design parameters. For these reasons, within the European framework, systems codes like SYCOMORE (SYstem COde for MOdelling tokamak REactor) have been developed. SYCOMORE includes several specific modules, one of which is aimed to define a suitable design of the helium breeding blanket. The research activity has been devoted to improve the method to define automatically the First Wall design starting from thermal-hydraulic and thermo-mechanical considerations, using analytical design formulae and, also, taking i…
Optimization of the first wall for the DEMO water cooled lithium lead blanket
The maximum heat load capacity of a DEMO First Wall (FW) of reasonable cost may impact the decision of the implementation of limiters in DEMO. An estimate of the engineering limit of the FW heat load capacity is an essential input for this decision. This paper describes the work performed to optimize the FW of the Water Cooled Lithium-Lead (WCLL) blanket concept for DEMO fusion reactor in order to increase its maximum heat load capacity. The optimization is based on the use of water at typical Pressurised Water Reactors conditions as coolant. The present WCLL FW with a waved plasma-faced surface and with circular channels was studied and the heat load limit has been predicted with FEM analy…
On the thermal and thermomechanical assessment of the “Optimized Conservative” helium-cooled lithium lead breeding blanket concept for DEMO
Abstract Within the framework of EUROfusion R&D activities a research campaign has been performed at CEA-Saclay, in close collaboration with the University of Palermo, in order to investigate thermal and thermomechanical performances of the “Optimized Conservative” concept of DEMO Helium-Cooled Lithium Lead breeding blanket (HCLL). Attention has been paid to the HCLL outboard equatorial module (OEM) when subjected to the steady state nominal loading scenario. To this purpose three simplified 3D models, characterized by an increasing level of detail, have been set-up taking into account, firstly, a single radial-toroidal slice, then a basic module geometric unity composed by two adjacent sli…