0000000000136194
AUTHOR
J. Nafar Dastgerdi
Multiscale microstructural characterization of particulate-reinforced composite with non-destructive X-ray micro- and nanotomography
Abstract Methods based on X-ray tomography are developed to study the relevant statistical quantities describing the microstructural inhomogeneity of particulate reinforced composites. The developed methods are applied in estimating microstructural inhomogeneity parameters of composites containing metallic glass particles in metal matrix, extruded in varying pressure loads. This study indicates that the critical characteristics with regard to the effect of particle clustering are cluster size and shape, local volume fraction of particles in the cluster and the distance between clusters. The results demonstrate that the spatial distribution of reinforcement is very uneven and the amount of p…
Effects of particle clustering on the plastic deformation and damage initiation of particulate reinforced composite utilizing X-ray CT data and finite element modeling
In this paper, a new simulation technique which can include microstructural inhomogeneity of particulate reinforced composites is proposed to accurately study deformation pattern and damage mechanism in these composites. Three dimensional microstructures constructed from XCT images incorporated into finite element modeling codes with minimal approximation to capture the effects of cluster size, local volume fraction of particles in the cluster and the distance between clusters as relevant statistical quantities describing the microstructural inhomogeneity of particulate reinforced composites. A quantitative parameter as degree of clustering is defined to consider particle clustering effect.…