0000000000136309
AUTHOR
Nuria Rodríguez
Unprecedented Palladium-Catalyzed Cross-Coupling Reaction of α-Bromo Sulfoxides with Boronic Acids
[reaction: see text] A new Suzuki-type palladium-catalyzed reaction of boronic acids with alpha-bromo sulfoxides has been developed using a protocol similar to the well-documented reaction of boronic acids with aryl halides. Both cross-coupling and homocoupling processes were observed. The best yields in cross-coupling products were obtained when the presence of oxygen was carefully excluded using degassed solvents. The oxidative addition palladium complex intermediate could be isolated and characterized by X-ray single-crystal diffraction.
First Synthesis of β-Keto Sulfoxides by a Palladium-Catalyzed Carbonylative Suzuki Reaction
[reaction: see text] An unprecedented palladium-catalyzed three-component cross-coupling reaction between alpha-bromo sulfoxide, carbon monoxide, and aromatic boronic acids provides a new and efficient approach to the synthesis of beta-ketosulfoxides. The reaction takes place under mild conditions with a wide range of variously substituted aryl and heteroaryl boronic acids. The carbonylative cross-coupling reaction is strongly favored over competing direct cross-coupling and homocoupling processes, except with boronic acids carrying strong electron-withdrawing substituents.
From Overstoichiometric to Substoichiometric Enantioselective Protonation with 2-Sulfinyl Alcohols: A View in Perspective
A general study of the enantioselective protonation of prochiral enolates with 2-sulfinyl alcohols is reported. The modification of reaction conditions to reduce drastically the amount of chiral proton source needed to obtain a good enantiomeric excess is reported. The effects of the different factors controlling the stereoselectivity are clearly established. Different protocols for enolate generation are compared.