0000000000136323
AUTHOR
C. De Bergh
Titan's surface and atmosphere from Cassini/VIMS data with updated methane opacity
International audience; We present an analysis of Titan data acquired by the Cassini Visual and Infrared Mapping Spectrometer (VIMS), making use of recent improvements in methane spectroscopic parameters in the region 1.3-5.2 μm. We first analyzed VIMS spectra covering a 8 × 10-km2 area near the Huygens landing site in order to constrain the single scattering albedo (ω0) of the aerosols over all of the VIMS spectral range. Our aerosol model agrees with that derived from Huygens Probe Descent Imager/Spectral Radiometer (DISR) in situ measurements below 1.6 μm. At longer wavelengths, ω0 steadily decreases from 0.92 at 1.6 μm to about 0.70 at 2.5 μm and abruptly drops to about 0.50 near 2.6 μm…
Corrigendum to "Titan's surface and atmosphere from Cassini/VIMS data with updated methane opacity" [Icarus 226 (2013) 470-486]
0019-1035/$ see front matter 2013 Elsevier Inc. All rights reserved. http://dx.doi.org/10.1016/j.icarus.2013.07.015 DOI of original article: http://dx.doi.org/10.1016/j.icarus.2013.05.033 ⇑ Corresponding author. Address: LESIA, Observatoire de Paris, Section de Meudon, 92195 Meudon Cedex, France. Fax: +33 145072806. E-mail address: bruno.bezard@obspm.fr (B. Bezard). 1 Present address: Foundation ‘‘La main a la pâte’’, Montrouge, France. M. Hirtzig , B. Bezard a,⇑, E. Lellouch , A. Coustenis , C. de Bergh , P. Drossart , A. Campargue , V. Boudon , V. Tyuterev , P. Rannou , T. Cours , S. Kassi , A. Nikitin , D. Mondelain , S. Rodriguez , S. Le Mouelic g
Methane and carbon monoxide infrared emissions observed at the Canada-France-Hawaii Telescope during the collision of comet SL-9 with Jupiter
Observations with the Fourier Transform Spectrometer were conducted in spectral ranges from 1.6 to 4.7 µm from July 17 to 21 (UT) on the hot plumes appearing on the limb as well as hours or days after the impacts. We present here an analysis of the methane emission observed at 3.3 µm some 10 min after the C impact, indicating the presence of a very small (less than 100 km wide) hot region with temperatures in the 750–1500 K range within the 0.1- to 0.01-mbar region. We also report the detection of CO emission at 4.7 µm 4.5 hrs after the L impact, indicative of a temperature of 274±10 K at the ∼1016 CO molec cm−2 level. The observations suggest that the stratospheric temperature decreases wi…