0000000000136395

AUTHOR

Maria R. Correia

showing 5 related works from this author

Enhanced optical properties of Cd–Mg-co-doped ZnO nanoparticles induced by low crystal structure distortion

2020

Abstract The growth of CdxMg0.125-xZn0.875O nanoparticles with yellow-orange luminescence is achieved up to 2.5 at. % Cd via a modified sol–gel process. X-ray diffraction analysis confirmed that all the nanoparticles have the hexagonal wurtzite structure. It is found that Cd doping has a considerable effect on the crystal size, microstrain, band gap, and photoluminescence of the Mg0·125Zn0·875O structure, originating from a preferred crystallographic orientation along the (101) plane of the wurtzite structure. The shift and broadening of the E2(high) mode observed in the Raman spectra due to growth-induced strain corroborates the small distortion observed in the X-ray diffraction data. The …

PhotoluminescenceMaterials scienceBand gapCdMgZnO nanoparticlesAnalytical chemistry02 engineering and technologyCrystal structure010402 general chemistry01 natural sciencesOxygen defectsCrystalsymbols.namesakeGeneral Materials ScienceWurtzite crystal structureDopingGeneral Chemistry021001 nanoscience & nanotechnologyCondensed Matter Physics0104 chemical sciencesMicrostrainYellow-orange luminescenceRaman spectroscopysymbols0210 nano-technologyRaman spectroscopyLuminescenceJournal of Physics and Chemistry of Solids
researchProduct

Optical active centres in ZnO samples

2006

Abstract In recent years, there has been a resurgence in the interest in the use of ZnO (Eg ∼ 3.37 eV) as a material for a wide range of opto-emitter applications spanning visible and short wavelengths. Bulk, thin films and nanomaterials obtained using different synthesis methods have been investigated for optoelectronic and biotechnological device applications. Nominally undoped bulk samples typically present a myriad-structured near-band-edge recombination, mainly due to free/bound excitons and donor–acceptor pair transitions. Furthermore, deep level emission due to intrinsic defects and extrinsic impurities, such as transition metal ions, are commonly observed in different grades of bulk…

II–VI semiconductorsChemical vapour depositionLuminescencePhotoluminescenceMaterials scienceLaser depositionOptical spectroscopyAnalytical chemistryNanoparticleCrystal growthMaterials ChemistryColloidsThin filmRutherford backscatteringDopingNanoclustersCondensed Matter PhysicsNanocrystalsX-ray diffractionElectronic Optical and Magnetic MaterialsIon implantationNanocrystalCeramics and CompositesNanoparticlesCrystal growthPlasma depositionSingle crystalJournal of Non-Crystalline Solids
researchProduct

Light-induced nonthermal population of optical phonons in nanocrystals

2017

Raman spectroscopy is widely used to study bulk and nanomaterials, where information is frequently obtained from spectral line positions and intensities. In this study, we monitored the Raman spectrum of ensembles of semiconductor nanocrystals (NCs) as a function of optical excitation intensity (optical excitation experiments). We observe that in NCs the red-shift of the Raman peak position with increasing light power density is much steeper than that recorded for the corresponding bulk material. The increase in optical excitation intensity results also in an increasingly higher temperature of the NCs as obtained with Raman thermometry through the commonly used Stokes/anti-Stokes intensity …

010302 applied physicseducation.field_of_studyMaterials sciencePhononPopulation02 engineering and technologyPhysik (inkl. Astronomie)021001 nanoscience & nanotechnology01 natural sciencesMolecular physicsSpectral lineNanomaterialssymbols.namesakeElectrical resistivity and conductivityExcited state0103 physical sciencessymbols0210 nano-technologyeducationRaman spectroscopyExcitation
researchProduct

Near band edge and defect emissions in wurtzite Cd0.025Mg0.10Zn0.875O nanocrystals

2021

Abstract We report on near band edge and local defects emissions in Cd0·025Mg0·10Zn0·875O (CdMgZnO) nanoparticles (NPs) as a function of temperature, where a strong temperature-dependent near-infrared emission around 1.7 eV (~730 nm) has been observed. The NPs were synthesized by a modified sol-gel method and were annealed at 750 °C after growing. The crystallographic parameters have been determined by 2-dimensional synchrotron x-ray diffraction (XRD) and conventional XRD analysis, confirming their growth within the wurtzite phase with a preferred orientation along the (101) plane and an apparent crystallite size of 52.72 ± 0.18 nm. This apparent crystallite size is consistent with the near…

Materials sciencePhotoluminescenceBand gapOrganic ChemistryAnalytical chemistry02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesAtomic and Molecular Physics and Optics0104 chemical sciencesElectronic Optical and Magnetic MaterialsInorganic ChemistryCrystalliteElectrical and Electronic EngineeringPhysical and Theoretical Chemistry0210 nano-technologyValence electronSpectroscopyElectronic band structureHigh-resolution transmission electron microscopySpectroscopyWurtzite crystal structureOptical Materials
researchProduct

The role of Ga and Bi doping on the local structure of transparent zinc oxide thin films

2021

The experiment at HASYLAB/DESY was performed within the project I-20180036 EC. The research leading to this result has been supported by the project CALIPSOplus under the Grant Agreement 730872 from the EU Framework Programme for Research and Innovation HORIZON 2020. Filipe Correia is grateful to the Fundação para a Ciência e Tecnologia (FCT, Portugal) for the Ph.D. Grant SFRH/BD/111720/2015. Joana Ribeiro is grateful to the Project WinPSC - POCI-01-0247-FEDER-017796, for the research grant from the Agência Nacional de Inovação, co-funded by the European Regional Development Fund (ERDF), through the Operational Programme for Competitiveness and Internationalisation (COMPETE 2020), under the…

Materials scienceAbsorption spectroscopyCiências Naturais::Ciências FísicasThin films:Ciências Físicas [Ciências Naturais]:Chemical engineering [Engineering and technology]02 engineering and technology010402 general chemistry01 natural sciencessymbols.namesakeX-ray photoelectron spectroscopy:Engenharia química [Ciências da engenharia e tecnologias]Zinc oxide:NATURAL SCIENCES:Physics [Research Subject Categories]Materials ChemistryThin filmChemistry Chemical engineeringWurtzite crystal structureX-ray absorption spectroscopyScience & TechnologyMechanical EngineeringThermoelectricMetals and AlloysSputteringX-ray absorption spectroscopySputter deposition021001 nanoscience & nanotechnologyQuímica Engenharia química0104 chemical sciencesCrystallography13. Climate actionMechanics of Materialsddc:540Raman spectroscopysymbolsGrain boundary0210 nano-technologyRaman spectroscopy
researchProduct