0000000000136520

AUTHOR

Francisco Del Aguila

Distinguishing between lepton number violating scalars at the LHC

Scalars with lepton number violating interactions decaying into lepton pairs, as those mediating the see-saw of type II, always include doubly-charged components. If these are observed at the LHC, their electroweak quantum numbers can be determined through their leptonic decays in pair and single production.

research product

Effective Lagrangian approach to neutrinoless double beta decay and neutrino masses

Neutrinoless double beta ($0\nu\beta\beta$) decay can in general produce electrons of either chirality, in contrast with the minimal Standard Model (SM) extension with only the addition of the Weinberg operator, which predicts two left-handed electrons in the final state. We classify the lepton number violating (LNV) effective operators with two leptons of either chirality but no quarks, ordered according to the magnitude of their contribution to \znbb decay. We point out that, for each of the three chirality assignments, $e_Le_L, e_Le_R$ and $e_Re_R$, there is only one LNV operator of the corresponding type to lowest order, and these have dimensions 5, 7 and 9, respectively. Neutrino masse…

research product

Discriminating between lepton number violating scalars using events with four and three charged leptons at the LHC

Many Standard Model extensions predict doubly-charged scalars; in particular, all models with resonances in charged lepton-pair channels with non-vanishing lepton number; if these are pair produced at the LHC, the observation of their decay into l(-/+)l(-/+)W(-/+)W(-/+) will be necessary in order to establish their lepton-number violating character, which is generally not straightforward. Nonetheless, the analysis of events containing four charged leptons (including scalar decays into one or two taus as well as into W bosons) makes it possible to determine whether the doubly-charged excitation belongs to a multiplet with weak isospin T = 0,1/2,1,3/2 or 2 (assuming there are no excitations w…

research product

A realistic model of neutrino masses with a large neutrinoless double beta decay rate

The minimal Standard Model extension with the Weinberg operator does accommodate the observed neutrino masses and mixing, but predicts a neutrinoless double beta ($0\nu\beta\beta$) decay rate proportional to the effective electron neutrino mass, which can be then arbitrarily small within present experimental limits. However, in general $0\nu\beta\beta$ decay can have an independent origin and be near its present experimental bound; whereas neutrino masses are generated radiatively, contributing negligibly to $0\nu\beta\beta$ decay. We provide a realization of this scenario in a simple, well defined and testable model, with potential LHC effects and calculable neutrino masses, whose two-loop…

research product

Lepton number violation and scalar searches at the LHC

We review the SM extensions with scalar multiplets including doubly- charged components eventually observable as di-leptonic resonances at the LHC. Special emphasis is paid to the limits on LNV implied by doubly- charged scalar searches at the LHC, and to the characterization of the multiplet doubly-charged scalars belong to if they are observed to decay into same-sign charged lepton pairs.

research product