0000000000136609

AUTHOR

Anna Estela

Use of Bacillus thuringiensis toxins for control of the cotton pest earias insulana (Boisd.) (Lepidoptera: Noctuidae)

ABSTRACT Thirteen of the most common lepidopteran-specific Cry proteins of Bacillus thuringiensis have been tested for their efficacy against newly hatched larvae of two populations of the spiny bollworm, Earias insulana . At a concentration of 100 μg of toxin per milliliter of artificial diet, six Cry toxins (Cry1Ca, Cry1Ea, Cry1Fa, Cry1Ja, Cry2Aa, and Cry2Ab) were not toxic at all. Cry1Aa, Cry1Ja, and Cry2Aa did not cause mortality but caused significant inhibition of growth. The other Cry toxins (Cry1Ab, Cry1Ac, Cry1Ba, Cry1Da, Cry1Ia, and Cry9Ca) were toxic to E. insulana larvae. The 50% lethal concentration values of these toxins ranged from 0.39 to 21.13 μg/ml (for Cry9Ca and Cry1Ia, …

research product

Interaction of Bacillus thuringiensis Toxins with Larval Midgut Binding Sites of Helicoverpa armigera (Lepidoptera: Noctuidae)

ABSTRACT In 1996, Bt-cotton (cotton expressing a Bacillus thuringiensis toxin gene) expressing the Cry1Ac protein was commercially introduced to control cotton pests. A threat to this first generation of transgenic cotton is the evolution of resistance by the insects. Second-generation Bt-cotton has been developed with either new B. thuringiensis genes or with a combination of cry genes. However, one requirement for the “stacked” gene strategy to work is that the stacked toxins bind to different binding sites. In the present study, the binding of 125 I-labeled Cry1Ab protein ( 125 I-Cry1Ab) and 125 I-Cry1Ac to brush border membrane vesicles (BBMV) of Helicoverpa armigera was analyzed in com…

research product

Lack of GDAP1 induces neuronal calcium and mitochondrial defects in a knockout mouse model of Charcot-Marie-tooth neuropathy

27 páginas, 9 figuras.

research product

Molecular and Insecticidal Characterization of a Cry1I Protein Toxic to Insects of the Families Noctuidae, Tortricidae, Plutellidae, and Chrysomelidae

ABSTRACT The most notable characteristic of Bacillus thuringiensis is its ability to produce insecticidal proteins. More than 300 different proteins have been described with specific activity against insect species. We report the molecular and insecticidal characterization of a novel cry gene encoding a protein of the Cry1I group with toxic activity towards insects of the families Noctuidae, Tortricidae, Plutellidae, and Chrysomelidae. PCR analysis detected a DNA sequence with an open reading frame of 2.2 kb which encodes a protein with a molecular mass of 80.9 kDa. Trypsin digestion of this protein resulted in a fragment of ca. 60 kDa, typical of activated Cry1 proteins. The deduced sequen…

research product

Potential of the Bacillus thuringiensis Toxin Reservoir for the Control of Lobesia botrana (Lepidoptera: Tortricidae), a Major Pest of Grape Plants▿

ABSTRACT The potential of Bacillus thuringiensis Cry proteins to control the grape pest Lobesia botrana was explored by testing first-instar larvae with Cry proteins belonging to the Cry1, Cry2, and Cry9 groups selected for their documented activities against Lepidoptera. Cry9Ca, a toxin from B. thuringiensis , was the protein most toxic to L. botrana larvae, followed in decreasing order by Cry2Ab, Cry1Ab, Cry2Aa, and Cry1Ia7, with 50% lethal concentration values of 0.09, 0.1, 1.4, 3.2, and 8.5 μg/ml of diet, respectively. In contrast, Cry1Fa and Cry1JA were not active at the assayed concentration (100 μg/ml). In vitro binding and competition experiments showed that none of the toxins teste…

research product