0000000000136625
AUTHOR
Boby Joseph
Local structure of ball-milled LaNi5 hydrogen storage material by Ni K-edge EXAFS
Abstract Local structure of the nanostructured LaNi5 hydrogen storage alloys, prepared by ball-milling, has been studied using Ni K-edge extended X-ray absorption fine structure spectroscopy. Results indicate that the ball-milling up to 100 h results in the production of nanoparticles characterized by large atomic disorder and slightly reduced unit-cell volume, compared to the bulk LaNi5. High temperature annealing appears to help in partial recovery of atomic order in the ball-milled samples; however, long-time ball-milled samples retain large disorder even after the high temperature annealing. The results suggest that the large disorder and the reduced unit-cell volume might be causing a …
Local structure of A-atom in ABO3 perovskites studies by RMC-EXAFS
The measurements of Sr K-edge XAFS were performed under the approval of Proposal No. 97G042 of Photon Factory (KEK) and partially supported by the Research Grants of Hirosaki University. This work was supported by Bruce Ravel providing data for BTO. Boby Joseph acknowledges IISc Bangalore and ICTP Trieste for financial support through the award of the IISc-ICTP fellowship.
An experimental investigation on the poor hydrogen sorption properties of nano-structured LaNi5 prepared by ball-milling
Abstract Nano-structured LaNi5 hydrogen storage materials prepared by ball-milling is analysed using differential scanning calorimetry (DSC) and x-ray photoelectron spectroscopy (XPS). DSC results indicate a partial elimination of defects at 500 °C in a more efficient way for the short-time ball-milled powders compared to the long-time ball-milled ones. XPS results show almost no change in the core-level electronic structure for La and Ni of LaNi5 in the bulk and the nano-structured forms, but gives an indication that the self-restoring mechanism of the active surface observed in the bulk sample (Siegmann et al. Phys. Rev. Lett. 40, 972) may not be occurring in the nano-powders. Results fro…
Large atomic disorder in nanostructured LaNi5 alloys: A la L3-edge extended X-ray absorption fine structure study
Abstract Local structure of the nanostructured LaNi 5 alloys, prepared by ball-milling, has been studied using La L 3 -edge extended X-ray absorption fine structure spectroscopy. The near-neighbor distances tend to decrease with the ball-milling, and the mean square relative displacements (MSRD) show substantial increase suggesting an increased atomic disorder. High temperature annealing helps in partial recovery of atomic order in the ball-milled samples for milling times upto 20 h, however, the long-time ball-milled samples seems to gain only a local random order. The results suggest that reduced unit-cell volume together with large atomic-disorder might be causing a higher energy-barrier…
Effects of ball-milling on the hydrogen sorption properties of LaNi5
Abstract Pressure–composition isotherms of LaNi 5 alloys were studied as function of ball-milling time. Results indicate that ball-milling convert a part of the LaNi 5 to a non-absorbing state—a state which does not absorb hydrogen under conditions where un-milled LaNi 5 powders absorb and transform to LaNi 5 H 6 , in addition to particle size reduction and creation of defects. The non-absorbing fraction in the milled sample is found to grow with increase in the ball-milling time. The resistance to the hydride formation of the long-time ball-milled LaNi 5 samples is found to continue even after a 1-h high vacuum annealing at around 1000 K. This indicates that the hydrogen-absorption-resist-…