0000000000136931
AUTHOR
Sanna Stolze
A new differentially pumped plunger device to measure excited-state lifetimes in proton emitting nuclei
Abstract A new plunger device has been designed and built to measure the lifetimes of unbound states in exotic nuclei beyond the proton drip-line. The device has been designed to work in both vacuum and dilute-gas environments made possible through the introduction of a low-voltage stepping motor. DPUNS will be used in conjunction with the gas-filled separator RITU and the vacuum separator MARA at the accelerator laboratory of the University of Jyvaskyla, Finland, to measure the lifetimes of excited states with low population cross-sections. This is achieved by eliminating the need for a carbon foil to isolate the helium gas of RITU from the beam line thus reducing the background from beam-…
Lifetime measurements of excited states in $^{169,171,173}$Os: Persistence of anomalous $B(E2)$ ratios in transitional rare earth nuclei in the presence of a decoupled $i_{13/2}$ valence neutron
International audience; Lifetimes of low-lying excited states in the νi13/2+ bands of the neutron-deficient osmium isotopes 169,171,173Os have been measured for the first time using the recoil-distance Doppler shift and recoil-isomer tagging techniques. An unusually low value is observed for the ratio B(E2;21/2+→17/2+)/B(E2;17/2+→13/2+) in 169Os, similar to the “anomalously” low values of the ratio B(E2;41+→21+)/B(E2;21+→0gs+) previously observed in several transitional rare-earth nuclides with even numbers of neutrons and protons, including the neighbouring 168,170Os. Furthermore, the evolution of B(E2;21/2+→17/2+)/B(E2;17/2+→13/2+) with increasing neutron number in the odd-mass isotopic c…
Shape coexistence in Hg-178
Lifetime measurements of excited states in Hg-178 have been performed using the Rh-103(Kr-78, p2n) reaction at a beam energy of 354 MeV. The recoil-decay tagging (RDT) technique was applied to select the Hg-178 nuclei and associate the prompt gamma rays with the correlated characteristic ground-state alpha decay. Lifetimes of the four lowest yrast states of Hg-178 have been determined using the recoil distance Doppler-shift (RDDS) method. The experimental data are compared to theoretical predictions with focus on shape coexistence. The results confirm the shift of the deformed prolate structures to higher lying states but also indicate their increasing deformation with decreasing neutron nu…
In-beam spectroscopic study of Cf244
The ground-state rotational band of the neutron-deficient californium (Z = 98) isotope 244Cf was identified for the first time and measured up to a tentative spin and parity of I I-pi = 20(+). The observation of the rotational band indicates that the nucleus is deformed. The kinematic and dynamic moments of inertia were deduced from the measured gamma-ray transition energies. The behavior of the dynamic moment of inertia revealed an up-bend due to a possible alignment of coupled nucleons in high-j orbitals starting at a rotational frequency of about (h) over bar (omega) = 0.20 MeV. The results were compared with the systematic behavior of the even-even N = 146 isotones as well as with avail…
Towards saturation of the electron-capture delayed fission probability : The new isotopes 240Es and 236Bk
The new neutron-deficient nuclei 240Es and 236Bk were synthesised at the gas-filled recoil separator RITU. They were identified by their radioactive decay chains starting from 240Es produced in the fusion–evaporation reaction 209Bi(34S,3n)240Es. Half-lives of 6(2) sand 22+13−6swere obtained for 240Es and 236Bk, respectively. Two groups of αparticles with energies Eα=8.19(3) MeVand 8.09(3) MeVwere unambiguously assigned to 240Es. Electron-capture delayed fission branches with probabilities of 0.16(6)and 0.04(2)were measured for 240Es and 236Bk, respectively. These new data show a continuation of the exponential increase of ECDF probabilities in more neutron-deficient isotopes. peerReviewed
Lifetime Measurements of Excited States in Pt172 and the Variation of Quadrupole Transition Strength with Angular Momentum
Lifetimes of the first excited 2(+) and 4(+) states in the extremely neutron -deficient nuclide Pt-172 have been measured for the first time using the recoil-distance Doppler shift and recoil-decay tagging techniques. An unusually low value of the ratio B(E2: 4(1)(+) -> 2(1)(+)/B(E2: 2(1)(+) -> 0(gs)(+)) = 0.55(19) was found, similar to a handful of other such anomalous cases observed in the entire Segre chart. The observation adds to a cluster of a few extremely neutron -deficient nuclides of the heavy transition metals with neutron numbers N approximate to 90-94 featuring the effect. No theoretical model calculations reported to date have been able to explain the anomalously low B(E2: 4(1…
Prompt and delayed spectroscopy of 203At : Observation of a shears band and a 29/2+ isomeric state
Using fusion-evaporation reactions, a gas-filled recoil separator, recoil-gating technique and recoil-isomer decay tagging technique we have extended the level scheme of 203 At ( N = 118 ) significantly. We have observed an isomeric [ τ = 14.1 ( 3 ) μ s ] state with a spin and parity of 29 / 2 + . The isomeric state is suggested to originate from the π ( h 9 / 2 ) ⊗ ∣ ∣ 202 Po ; 11 − ⟩ coupling, and it is depopulated through 286 keV E 2 and 366 keV E 3 transitions. In addition, we have observed a cascade of magnetic-dipole transitions which is suggested to be generated by the shears mechanism. peerReviewed
Confirmation of the new isotope Pb178
The extremely neutron-deficient isotope $^{178}\mathrm{Pb}$ has been produced. The GREAT spectrometer at the focal plane position of the gas-filled separator RITU was used to study the $\ensuremath{\alpha}$ decay of $^{178}\mathrm{Pb}$ and its $\ensuremath{\alpha}$-decay chain through $\ensuremath{\alpha}\text{\ensuremath{-}}\ensuremath{\alpha}$ correlations. The $\ensuremath{\alpha}$ decay was measured to have an energy and half-life of ${E}_{\ensuremath{\alpha}}$= 7610(30) keV and ${t}_{1/2}=0.{21}_{\ensuremath{-}0.08}^{+0.21}$ ms, respectively. The half-life is consistent with recent theoretical calculations using the Coulomb and proximity potential model. The $\ensuremath{\alpha}$-decay…
Experimental study of isomeric intruder 12+ states in At197,203
A newly observed isomeric intruder ${\textonehalf{}}^{+}$ state $[{T}_{\textonehalf{}}=3.5(6)\phantom{\rule{0.16em}{0ex}}\mathrm{ms}]$ is identified in $^{203}\mathrm{At}$ using a gas-filled recoil separator and fusion-evaporation reactions. The isomer is depopulated through a cascade of $E3$ and mixed $M1/E2$ transitions to the ${9/2}^{\ensuremath{-}}$ ground state, and it is suggested to originate from the $\ensuremath{\pi}{({s}_{\textonehalf{}})}^{\ensuremath{-}1}$ configuration. In addition, the structures above the ${\textonehalf{}}^{+}$ state in $^{203}\mathrm{At}$ and $^{197}\mathrm{At}$ are studied using in-beam $\ensuremath{\gamma}$-ray spectroscopy, recoil-decay tagging, and recoi…
Recoil-decay tagging spectroscopy of74162W88
Excited states in the highly neutron-deficient nucleus W-162 have been investigated via the Mo-92(Kr-78, 2 alpha) W-162 reaction. Prompt gamma rays were detected by the JUROGAM II high-purity germa ...
α -decay spectroscopy of the N=130 isotones Ra218 and Th220 : Mitigation of α -particle energy summing with implanted nuclei
© 2019 American Physical Society. An analysis technique has been developed in order to mitigate energy summing due to sequential short-lived α decays from nuclei implanted into a silicon detector. Using this technique, α-decay spectroscopy of the N=130 isotones Ra218 (Z=88) and Th220 (Z=90) has been performed. The energies of the α particles emitted in the Ra218→Rn214 and Th220→Ra216 ground-state-to-ground-state decays have been measured to be 8381(4) keV and 8818(13) keV, respectively. The half-lives of the ground states of Ra218 and Th220 have been measured to be 25.99(10) μs and 10.4(4) μs, respectively. The half-lives of the ground states of the α-decay daughters, Rn214 and Ra216, have …
Reduced transition probabilities along the yrast line in W-166
WOS: 000406755100001
Octupole correlations in the structure of 0$_2^+$ bands in the N=88 nuclei 150Sm and 152Gd
Knowledge of the exact microscopic structure of the 01 + ground state and first excited 02 + state in 150Sm is required to understand the branching of double β decay to these states from 150Nd. The detailed spectroscopy of 150Sm and 152Gd has been studied using (α,xn) reactions and the γ -ray arrays AFRODITE and JUROGAM II. Consistently strong E1 transitions are observed between the excited Kπ = 02 + bands and the lowest negative parity bands in both nuclei. These results are discussed in terms of the possible permanent octupole deformation in the first excited Kπ = 02 + band and also in terms of the “tidal wave” model of Frauendorf. peerReviewed
Confirmation of the new isotope 178Pb
The extremely neutron-deficient isotope 178Pb has been produced. The GREAT spectrometer at the focal plane position of the gas-filled separator RITU was used to study the α decay of 178Pb and its α-decay chain through α-α correlations. The α decay was measured to have an energy and half-life of Eα= 7610(30) keV and t1/2 = 0.21+0.21 −0.08 ms, respectively. The half-life is consistent with recent theoretical calculations using the Coulomb and proximity potential model. The α-decay reduced width and hindrance factor for 178Pb were deduced and correspond to an unhindered l = 0 transition. In addition, the mass excess of 178Pb and the α-decay Q value were calculated from the experimental results…
Lifetime measurement of the first excited 2+ state in 112Te
The lifetime of the 2+ → 0+ g.s. transition in the neutron-deficicient nucleus 112Te has been measured for the first time using the DPUNS plunger and the recoil distance Doppler shift technique. The deduced value for the reduced transition probability is B(E2 :0+ g.s. → 2+) = 0.46 ± 0.04 e2b2, indicating that there is no unexpected enhancement of the B(E2 :0+ g.s. → 2+) values in Te isotopes below the midshell. The result is compared to and discussed in the framework of large-scale shell-model calculations. peerReviewed
Identification of the Jπ = 1− state in 218Ra populated via α decay of 222Th
The α decay of 222Th populating the low-lying J π = 3− state, and also a proposed 1− state, in 218Ra has been observed. The observations suggest an excitation energy of 853 keV for the 1− state, which is 60 keV above the 3− state. The hindrance factors of these α decays give a possible boundary to the region of ground-state octupole deformation in the light-actinide nuclei. The relative positions of the J π = 1− and 3− states suggest they are produced by an octupole-vibrational mechanism, as opposed to α clustering or rotations of a reflection-asymmetric octupole-deformed shape. peerReviewed
A time-of-flight correction procedure for fast-timing data of recoils with varying implantation positions at a spectrometer focal plane
Abstract Fast-timing measurements at the focal plane of a separator can suffer from poor timing resolution. This is due to the variations in time-of-flight (ToF) for photons travelling to a given detector, which arise from the changes in the implantation positions of the recoil nuclei emitting the γ rays of interest. In order to minimise these effects on timing measurements, a procedure is presented that improves fast-timing data by performing ToF corrections on an event-by-event basis. This method was used to correct data collected with an array of eight LaBr 3 detectors, which detected γ rays from spatially distributed 138Gd recoil-implants at the focal plane of the Recoil-Ion-Transport-U…
Quantum-state-selective decay spectroscopy of Ra213
An experimental scheme combining the mass resolving power of a Penning trap with contemporary decay spectroscopy has been established at GSI Darmstadt. The Universal Linear Accelerator (UNILAC) at GSI Darmstadt provided a $^{48}\mathrm{Ca}$ beam impinging on a thin $^{170}\mathrm{Er}$ target foil. Subsequent to velocity filtering of reaction products in the Separator for Heavy Ion reaction Products (SHIP), the nuclear ground state of the $5n$ evaporation channel $^{213}\mathrm{Ra}$ was mass-selected in SHIPTRAP, and the $^{213}\mathrm{Ra}$ ions were finally transferred into an array of silicon strip detectors surrounded by large composite germanium detectors. Based on comprehensive geant4 s…
Spectroscopy of 161Hf from low to high spin
Excited states in the neutron-deficient nucleus 161 72Hf89 have been populated using the 118Sn(48Ti,5n) 161Hf and 110Pd(56Fe,5n) 161Hf fusion-evaporation reactions at 240 and 270 MeV, respectively. The level scheme for 161Hf has been extended with the observation of new band structures and an I π = (13/2+) isomeric state with a half-life of 4.8(2) μs has been identified. The decay path from this isomer to the (7/2−) ground state is established. The yrast band, based on the (13/2+) isomeric state, is extended up to (73/2+) and side band structures are identified up to (69/2−) and (55/2−). Quasiparticle assignments for these rotational structures are made on the basis of their alignment prope…
Excited states and reduced transition probabilities in Os168
The level scheme of the neutron-deficient nuclide 168Os has been extended and mean lifetimes of excited states have been measured by the recoil distance Doppler-shift method using the JUROGAM \gamma-ray spectrometer in conjunction with the IKP K\"oln plunger device. The 168Os \gamma rays were measured in delayed coincidence with recoiling fusion-evaporation residues detected at the focal plane of the RITU gas-filled separator. The ratio of reduced transition probabilities B(E2;4_1^+ \rightarrow 2_1^+)/B(E2;2_1^+ \rightarrow 0_1^+) is measured to be 0.34(18), which is very unusual for collective band structures and cannot be reproduced by IBM-2 model calculations based on the SkM* energy-den…
Reduced transition probabilities along the yrast line in 166W
Lifetimes of excited states in the yrast band of the neutron-deficient nuclide 166W have been measured utilizing the DPUNS plunger device at the target position of the JUROGAM II γ -ray spectrometer in conjunction with the RITU gas-filled separator and the GREAT focal-plane spectrometer. Excited states in 166W were populated in the 92Mo(78Kr,4p) reaction at a bombarding energy of 380 MeV. The measurements reveal a low value for the ratio of reduced transitions probabilities for the lowest-lying transitions B(E2; 4+ → 2+)/B(E2; 2+ → 0+) = 0.33(5), compared with the expected ratio for an axially deformed rotor (B4/2 = 1.43). peerReviewed
Octupole correlations in the structure of02+bands in theN=88nuclei150Sm and152Gd
Knowledge of the exact microscopic structure of the 0${}_{1}$${}^{+}$ ground state and first excited 0${}_{2}$${}^{+}$ state in ${}^{150}$Sm is required to understand the branching of double \ensuremath{\beta} decay to these states from ${}^{150}$Nd. The detailed spectroscopy of ${}^{150}$Sm and ${}^{152}$Gd has been studied using (\ensuremath{\alpha},xn) reactions and the \ensuremath{\gamma}-ray arrays AFRODITE and JUROGAM II. Consistently strong $E$1 transitions are observed between the excited ${K}^{\ensuremath{\pi}}$ $=$ 0${}_{2}$${}^{+}$ bands and the lowest negative parity bands in both nuclei. These results are discussed in terms of the possible permanent octupole deformation in the …
Fine structure in the α decay of 156Lu and 158Ta
Fine structure in the α decay of high-spin states in 156Lu and 158Ta has been identified by means of αγ - coincidence analysis. One new α decay from 156Lu and two from 158Ta were identified, one of which was found to populate a previously unknown state in 154Lu. The hindrance-factor systematics from all four odd-odd, N = 85 nuclei with known α-decaying, πh11/2 coupled states were reviewed and are discussed. These proved consistent with the previously assigned (πh11/2νh9/2 )10+ configuration of the α-decaying state in 156Lu, which differs from the (πh11/2ν f7/2 )9+ assignments in the other three nuclei. peerReviewed
Spectroscopy on the proton drip-line: Probing the structure dependence of isospin nonconserving interactions
J. Henderson et al. ; 4 pags. ; 4 figs. ; PACS number(s): 21.10.Re, 21.60.Cs, 23.20.Lv, 27.50.+e
Evolution from γ -soft to stable triaxiality in Nd136 as a prerequisite of chirality
The level structure of Nd136 has been investigated using the Mo100(Ar40,4n) reaction and the JUROGAM II+RITU+GREAT setup. The level scheme has been extended significantly. Many new bands have been identified both at low and high spin, among which are five nearly degenerate bands interpreted as chiral partners. Excitation energies, spins, and parities of the previously known bands are revised and firmly established, and some previously known bands have been revised. Configurations are assigned to the observed bands based on cranked Nilsson-Strutinsky calculations. The band structure of Nd136 is now clarified and the various types of single-particle and collective excitations are well underst…
Evidence of chiral bands in even-even nuclei
Evidence for chiral doublet bands has been observed for the first time in the even-even nucleus 136 Nd . One chiral band was firmly established. Four other candidates for chiral bands were also identified, which can contribute to the realization of the multiple pairs of chiral doublet bands ( M χ D ) phenomenon. The observed bands are investigated by the constrained and tilted axis cranking covariant density functional theory (TAC-CDFT). Possible configurations have been explored. The experimental energy spectra, angular momenta, and B ( M 1 ) / B ( E 2 ) values for the assigned configurations are globally reproduced by TAC-CDFT. Calculated results support the chiral interpretation of the o…
Excited states in Ra217 populated in the α decay of Th221
Fine structure in the α decay of Th90221, populating excited states in Ra88217, was studied using αγ-coincidence spectroscopy. Two α-decay branches from Th221 have been newly observed, with Eα(keV)[bα(%)]=7951(8)[0.14(3)] and 8247(3)[1.51(12)], together with three previously known branches. Also, two new states in Ra217 were identified at E = 177 and 227 keV. The ground-state configurations of the odd-A, N = 131 transitional isotones above Pb208 are interpreted from their α-decay fine structure systematics and considered in terms of predictions using spherical shell and reflection-asymmetric models.
Spectroscopy ofAt201including the observation of a shears band and the29/2+isomeric state
The excited states of $^{201}\mathrm{At}$ were studied and an isomeric $29/{2}^{+}$ state $[{T}_{\textonehalf{}}=3.39(9)\phantom{\rule{0.28em}{0ex}}\ensuremath{\mu}\mathrm{s}]$ was identified by using a fusion-evaporation reaction, a gas-filled recoil separator, and recoil gating techniques. The $29/{2}^{+}$ state is suggested to originate from the $\ensuremath{\pi}({h}_{9/2})\ensuremath{\bigotimes}|^{200}\mathrm{Po};{11}^{\ensuremath{-}}\ensuremath{\rangle}$ configuration, and it decays through the 269- and 339-keV $E2$- and $E3$-type transitions, respectively. Moreover, a cascade of magnetic dipole transitions that is suggested to originate from a shears band was observed by using recoil-…
Reassigning the shapes of the 0+ states in the 186Pb nucleus
Across the physics disciplines, the 186Pb nucleus is the only known system, where the two first excited states, together with the ground state, form a triplet of zero-spin states assigned with prolate, oblate and spherical shapes. Here we report on a precision measurement where the properties of collective transitions in 186Pb were determined in a simultaneous in-beam γ-ray and electron spectroscopy experiment employing the recoil-decay tagging technique. The feeding of the 0+2 state and the interband 2+2→2+1 transition have been observed. We also present direct measurement of the energies of the electric monopole transitions from the excited 0+ states to the 0+ ground state. In contrast to…
Direct observation of theBa114→Xe110→Te106→Sn102tripleα-decay chain using position and time correlations
The triple $\ensuremath{\alpha}$-decay chain $^{114}\mathrm{Ba}\ensuremath{\rightarrow}^{110}\mathrm{Xe}\ensuremath{\rightarrow}^{106}\mathrm{Te}\ensuremath{\rightarrow}^{102}\mathrm{Sn}$ has been directly observed for the first time, following the $^{58}\mathrm{Ni}(^{58}\mathrm{Ni},2n)$ reaction. Implantation of $^{114}\mathrm{Ba}$ nuclei into a double-sided silicon-strip detector has allowed their $\ensuremath{\alpha}$ decays to be correlated in position and time with the $\ensuremath{\alpha}$ decays of the daughter $(^{110}\mathrm{Xe})$ and granddaughter $(^{106}\mathrm{Te})$ nuclei. In total, 17 events have been assigned to the $^{114}\mathrm{Ba}\ensuremath{\rightarrow}^{110}\mathrm{Xe}…
Coulomb excitation of re-accelerated 208Rn and 206Po beams
In the present study, B( E2; 2(+)-> 0(+) ) values have been measured in the Rn-208 and Po-206 nuclei through Coulomb excitation of re-accelerated radioactive beams in inverse kinematics at CERN-ISOLDE. The resulting B(E2; 2(+)-> 0(+)) in 208Rn is similar to 0.08 e(2)b(2). These nuclei lie in, or at the boundary of the region where seniority scheme should persist. However, contributions from collective excitations may be present when moving away from the N = 126 shell closure. To date, surprisingly little is known of the transition probabilities between the low-spin states in this region.
Towards saturation of the electron-capture delayed fission probability: The new isotopes $^{240}Es$ and $^{236}Bk$
Abstract The new neutron-deficient nuclei 240 Es and 236 Bk were synthesised at the gas-filled recoil separator RITU. They were identified by their radioactive decay chains starting from 240 Es produced in the fusion–evaporation reaction 209 Bi( 34 S,3n) 240 Es. Half-lives of 6 ( 2 ) s and 22 − 6 + 13 s were obtained for 240 Es and 236 Bk, respectively. Two groups of α particles with energies E α = 8.19 ( 3 ) MeV and 8.09 ( 3 ) MeV were unambiguously assigned to 240 Es. Electron-capture delayed fission branches with probabilities of 0.16 ( 6 ) and 0.04 ( 2 ) were measured for 240 Es and 236 Bk, respectively. These new data show a continuation of the exponential increase of ECDF probabilitie…
Identification of a dipole band above the Iπ = 31/2- isomeric state in 189Pb
A dipole band of six transitions built upon a firmly established I π = 31/2− isomeric state has been identified in 189Pb using recoil-isomer tagging. This is the lightest odd-mass Pb nucleus in which a dipole band is known. The dipole nature of the new transitions has been confirmed through angular-intensity arguments. The evolution of the excitation energy and the aligned-angular momentum of the states in the new dipole band are compared with those of dipole bands in heavier, odd-mass lead isotopes. This comparison suggests that the new band in 189Pb is based upon a π[s−2 1/2h9/2i13/2]11− ⊗ ν[i −1 13/2+ ]13/2+ configuration. However, the increased aligned-angular momentum in 189Pb may sugg…
Lifetime measurements in 166Re : Collective versus magnetic rotation
WOS: 000371740600004
Direct observation of the Ba 114 → Xe 110 → Te 106 → Sn 102 triple α -decay chain using position and time correlations
The triple α-decay chain 114Ba → 110Xe → 106Te → 102Sn has been directly observed for the first time, following the 58Ni(58Ni ,2n) reaction. Implantation of 114Ba nuclei into a double-sided silicon-strip detector has allowed their α decays to be correlated in position and time with the α decays of the daughter (110Xe) and granddaughter (106Te) nuclei. In total, 17 events have been assigned to the 114Ba → 110Xe → 106Te → 102Sn triple α-decay chain. The energy of the 114Ba α decay has been measured to be Eα = 3480(20) keV, which is 70 keV higher than the previously measured value, and the half-life of 114Ba has been measured with improved accuracy, to be 380+190 −110 ms. A revised Q12C value …
A NEW PLUNGER DEVICE FOR INVESTIGATING THE EFFECTS OF DEFORMATION ON PROTON EMISSION RATES VIA LIFETIME MEASUREMENTS
A new plunger device has been designed and built to measure the lifetimes of unbound states in exotic nuclei beyond the proton drip-line. The device is designed to work in both vacuum and dilute-gas environments made possible through the introduction of a lowvoltage piezoelectric motors. The differential plunger for unbound nuclear states, DPUNS, will be used in conjunction with the gas-filled separator RITU and the vacuum separator MARA at the accelerator laboratory of the University of Jyvaskyla, Finland, to measure the lifetimes of excited states with low population cross-sections. This is achieved by eliminating the need for a carbon foil to isolate the helium gas of RITU from the beam …
Experimental study of isomeric intruder ½+ states 197,203At
A newly observed isomeric intruder ½ + state [ T ½ = 3.5 ( 6 ) ms ] is identified in 203 At using a gas-filled recoil separator and fusion-evaporation reactions. The isomer is depopulated through a cascade of E 3 and mixed M 1 / E 2 transitions to the 9 / 2 − ground state, and it is suggested to originate from the π ( s ½ ) − 1 configuration. In addition, the structures above the ½ + state in 203 At and 197 At are studied using in-beam γ -ray spectroscopy, recoil-decay tagging, and recoil-isomer decay tagging methods. The ½ + state is fed from 3 / 2 + and 5 / 2 + states, and the origin of these states are discussed. peerReviewed
Spectroscopy of Kr70 and isospin symmetry in the T=1 fpg shell nuclei
The recoil-β tagging technique has been used in conjunction with the 40 Ca(32 S ,2n) reaction at a beam energy of 88 MeV to identify transitions associated with the decay of the 2 + and, tentatively, 4 + states in the nucleus 70 Kr. These data are used, along with previously published data, to examine the triplet energy differences (TED) for the mass 70 isobars. The experimental TED values are compared with shell model calculations, performed with the JUN45 interaction in the fpg model space, that include a J = 0 isospin nonconserving (INC) interaction with an isotensor strength of 100 keV. The agreement is found to be very good up to spin 4 and supports the expectation for analog states th…
Decay of a 19− isomeric state in 156Lu
A multiparticle spin-trap isomeric state having a half-life of 179(4) ns and lying 2601 keV above the yrast 10 + state in 156 Lu has been discovered. The 156 Lu nuclei were produced by bombarding isotopically enriched 106 Cd targets with beams of 58 Ni ions, separated in flight using the gas-filled separator RITU and their decays were measured using the GREAT spectrometer. Analysis of the main decay path that populates yrast states observed previously suggests a spin-parity assignment of 19 − for the isomeric state, which is consistent with isomeric states identified in the N = 85 isotones. Comparison with other decay paths in 156 Lu indicates that the [ π h − 1 11 / 2 ⊗ ν h 9 / 2 ] 10 + st…
The isomeric structure of132Pr
The isomeric structure of the neutron deficient nucleus 132Pr, located in the rare-earth region of the nuclear chart, has been studied with the 98Mo(40Ar,5pn)132Pr reaction at beam energies of 150, 158 and 165 MeV. The experiment was performed at the University of Jyvaskyla, Finland where the 40Ar beam was accelerated onto the target by the K130 cyclotron. The JUROGAM II HPGe detector array was employed in conjunction with the RITU gas-filled recoil separator. The focal-plane chamber housed a multi wire proportional counter and a position-sensitive silicon strip detector used for the implantation and identification of recoiling nuclei. The recoil-isomer tagging technique was used to correla…
Highly deformed bands in Nd nuclei: New results and consistent interpretation within the cranked Nilsson-Strutinsky formalism
International audience; Three new highly-deformed (HD) bands are identified in Nd136 and the highly deformed band of Nd137 is extended at higher spin by four transitions, revealing a band crossing associated with the occupation of the second νi13/2 intruder orbital. Extended cranked Nilsson-Strutinsky calculations are performed for all HD bands observed in Nd134, Nd136, and Nd137, achieving for the first time a consistent interpretation of all HD bands in the Nd nuclei. The new interpretation has significant consequences, like the change of parity of the yrast HD bands of Nd134 and Nd136, and the involvement of two negative-parity neutron intruder orbitals in the configurations of most HD b…
Lifetime measurements of lowest states in the π g7/2 ⊗ νh11/2 rotational band in 112I
A differential-plunger device was used to measure the lifetimes of the lowest states in the πg7/2 ⊗ νh11/2 rotational band in doubly odd 112I with the 58Ni(58Ni, 3pn) reaction. A differential decay curve method was performed using the fully shifted and degraded γ -ray intensity measurements as a function of target-to-degrader distance. The lifetimes of the lowest three states in the πg7/2 ⊗ νh11/2 band in 112I were measured to be 124(30), 130(25), and 6.5(5) ps, respectively. As the lifetimes of successive excited states in a rotational band are expected to decrease with increasing excitation energy, these measurements suggest that the order of the transitions in the established band in 112…
Identification of a 6.6μs isomeric state in 175Ir
An experiment has been performed to study excited states in the neutron-deficient nucleus 175Ir via the use of the JUROGAM II high-purity germanium detector array and the RITU gas-filled separator at JYFL, Jyväskylä. By using isomer tagging, an isomeric state with a half-life of 6.58(15) μs has been observed in 175Ir for the first time. It has been established that the isomer decays via a 45.2 (E1)–26.1 (M1) keV cascade to new states below the previously reported ground state in 175Ir with Iπ = (5/2−). We now reassign this (5/2−) state to the isomeric state discovered in this study. peerReviewed
In-beam study of 253No using the SAGE spectrometer
The heavy actinide nucleus 253No (Z = 102) was studied using the (S)ilicon (A)nd (Ge)rmanium (SAGE) spectrometer allowing simultaneous in-beam $\gamma$ -ray and conversion electron spectroscopy at the accelerator laboratory of the University of Jyvaskyla. Using the recoil-tagging technique, $\gamma$ -electron coincidences have allowed for the extension of the level scheme in the lower-spin region of the yrast band. In addition, internal conversion coefficient (ICC) measurements to establish the multipolarity of transitions have been performed. Measurement of the interband-intraband branching ratios supports the assignment of the Nilsson band-head configuration $9/2^{-}[734]$ assigned in pre…
Deformation of the proton emitter 113Cs from electromagnetic transition and proton-emission rates
The lifetime of the (11/2+) state in the band above the proton-emitting (3/2+) state in 113Cs has been measured to be τ = 24(6) ps from a recoil-decay-tagged differential-plunger experiment. The measured lifetime was used to deduce the deformation of the states using wave functions from a nonadiabatic quasiparticle model to independently calculate both proton-emission and electromagnetic γ -ray transition rates as a function of deformation. The only quadrupole deformation, which was able to reproduce the experimental excitation energies of the states, the electromagnetic decay rate of the (11/2+) state and the proton-emission rate of the (3/2+) state, was found to be β2 = 0.22(6). This defo…
Fine structure in the α decay of high-spin isomers in 155Lu and 156Hf
Fine structure in the α decay of high-spin isomers in 155Lu(25/2−) and 156Hf (8+) has been studied for the first time using αγ -coincidence analysis. Three new α decays from 155Lu(25/2−) and two from 156Hf (8+) have been identified, populating seniority s > 1 states in the N = 82 nuclei 151Tm and 152Yb, respectively. The reduced hindrance factors of the α decays support the previous configuration assignments of the populated states. This is the first observation of states with excitation energy greater than 1.5 MeV being populated following α decay in nuclei outside of the 208Pb region. peerReviewed
Enhancing the sensitivity of recoil-beta tagging
Tagging with β-particles at the focal plane of a recoil separator has been shown to be an effective technique for the study of exotic proton-rich nuclei. This article describes three new pieces of apparatus used to greatly improve the sensitivity of the recoil-beta tagging technique. These include a highly-pixelated double-sided silicon strip detector, a plastic phoswich detector for discriminating high-energy β-particles, and a charged-particle veto box. The performance of these new detectors is described and characterised, and the resulting improvements are discussed.
Detailed spectroscopy of Bi195
An experiment focused on the study of shape coexistence and new high-spin structures in $^{195}\mathrm{Bi}$ has been performed. The nucleus is in a transitional region of the bismuth isotope chain. A large number of new states have been found, resulting in a significant extension of the previously known level scheme. Several new collective structures have been identified. A strongly coupled rotational band built upon the $13/{2}^{+}$ isomeric state was extended up to ${I}^{\ensuremath{\pi}}=(49/{2}^{+})$ and an energy of 5706 keV. The ${I}^{\ensuremath{\pi}}=31/{2}^{+}$ member of the $\ensuremath{\pi}{i}_{13/2}$ band was also found to feed a new long-lived isomeric state with an excitation …
Single-particle and collective excitations in the transitional nucleus 166Os
The mean lifetimes of the lowest energy 2(+), 8(+) and 9(-) states in Os-166 have been measured using the recoil distance Doppler-shift method in conjunction with a selective recoil-decay tagging t ...
Excited states and reduced transition probabilities in Os 168
The level scheme of the neutron-deficient nuclide 168Os has been extended and mean lifetimes of excited states have been measured by the recoil distance Doppler-shift method using the JUROGAM γ -ray spectrometer in conjunction with the IKP Koln plunger device. The ¨ 168Os γ rays were measured in delayed coincidence with recoiling fusion-evaporation residues detected at the focal plane of the RITU gas-filled separator. The ratio of reduced transition probabilities B(E2; 4+ 1 → 2+ 1 )/B(E2; 2+ 1 → 0+ 1 ) is measured to be 0.34(18), which is very unusual for collective band structures and cannot be reproduced by interacting boson model (IBM-2) calculations based on the SkM* energy-density func…
Decay of a 19− isomeric state in Lu156
A multiparticle spin-trap isomeric state having a half-life of 179(4) ns and lying 2601 keV above the yrast 10(+) state in Lu-156 has been discovered. The Lu-156 nuclei were produced by bombarding ...
Lifetime measurements of lowest states in the πg7/2⊗νh11/2 rotational band in I112
Single-particle and collective excitations in the transitional nucleus 166Os
The mean lifetimes of the lowest energy 2+, 8+ and 9− states in 166Os have been measured using the recoil distance Doppler-shift method in conjunction with a selective recoil-decay tagging technique. These measurements extend studies into the most neutron-deficient mass region accessible to current experimental methods. The B(E2; 2+ → 0+) = 7(2) W.u. extracted from these measurements is markedly lower than those observed in the heavier even-mass Os isotopes. The 8+ and 9− states yield reduced transition probabilities that are consistent with single-particle transitions. While these values may indicate a departure from collective structure, the level scheme and the underlying nuclear configu…
Lifetime measurement of the first excited2+state inTe112
The lifetime of the 2(+) --> 0(g.s.)(+) transition in the neutron-deficicient nucleus Te-112 has been measured for the first time using the DPUNS plunger and the recoil distance Doppler shift te ...
Proton emission from an oblate nucleus 151Lu
Abstract Excited states in the proton-unbound nucleus 151Lu have been established using γ-ray coincidence techniques. The lifetime of the first excited state above the proton-emitting ground state has been measured using the recoil-distance Doppler-shift method combined with recoil-decay tagging. The experimental level scheme and extracted lifetime have been compared with state-of-the-art theoretical calculations based upon a non-adiabatic deformed Woods–Saxon potential. This comparison suggests that the proton-emitting ground state in 151Lu is mildly oblate with a deformation β = − 0.11 − 0.05 + 0.02 and represents the best evidence to date for proton emission from an oblate nucleus.
Excited states in the proton-unbound nuclide Ta-158
Excited states in the neutron-deficient odd-odd proton-unbound nuclide $^{158}\mathrm{Ta}$ have been investigated in two separate experiments. In the first experiment, $^{166}\mathrm{Ir}$ nuclei were produced in the reactions of 380 MeV $^{78}\mathrm{Kr}$ ions with an isotopically enriched $^{92}\mathrm{Mo}$ target. The $\ensuremath{\alpha}$-decay chain of the ${9}^{+}$ state in $^{166}\mathrm{Ir}$ was analyzed. Fine structure in the $\ensuremath{\alpha}$ decay of the ${9}^{+}$ state in $^{162}\mathrm{Re}$ established a 66 keV difference in excitation energy between the lowest-lying ${9}^{+}$ and ${10}^{+}$ states in $^{158}\mathrm{Ta}$. Higher-lying states in $^{158}\mathrm{Ta}$ were popul…
Decay spectroscopy of 179 82 Pb 97 and evidence for a 9/2− intruder state in 179 81 Tl 98
The very neutron-deficient isobars 179Pb and 179Tl have been produced using the fusion-evaporation reactions 104Pd(78Kr,xpyn), where x≤1 and y≥2. The gas-filled separator RITU was employed to transport and separate the recoiling nuclei of interest from the scattered beam and unwanted products. The GREAT spectrometer was used to study the decay properties through α−α and α−γ correlations, which has allowed the ground state of 179Pb to be assigned as Iπ=9/2−. The decay of 179Pb was measured to have an α-particle energy and half-life of Eα=7348(5)keV and t1/2=2.7(2) ms, respectively. A search for a νi13/2 state in 179Pb was performed, but only a limit of excitation energy and half-life was obt…
Recoil-decay tagging spectroscopy of 162 74 W 88
Excited states in the highly neutron-deficient nucleus 162W have been investigated via the 92Mo(78Kr, 2α) 162W reaction. Prompt γ rays were detected by the JUROGAM II high-purity germanium detector array and the recoiling fusion-evaporation products were separated by the recoil ion transport unit (RITU) gas-filled recoil separator and identified with the gamma recoil electron alpha tagging (GREAT) spectrometer at the focal plane of RITU. γ rays from 162W were identified uniquely using mother-daughter and mother-daughter-granddaughter α-decay correlations. The observation of a rotational-like ground-state band is interpreted within the framework of total Routhian surface (TRS) calculations, …
Decay spectroscopy of Pb97182179 and evidence for a 9/2− intruder state in Tl98181179
The very neutron-deficient isobars Pb-179 and Tl-179 have been produced using the fusion-evaporation reactions Pd-104(Kr-78,xpyn), where x = 2. The gas-filled separator RITU was employed to transpo ...
Lifetime measurements of excited states in $^{163}$W and the implications for the anomalous B(E2) ratios in transitional nuclei
Grahn, Tuomas/0000-0002-6255-2279; Herzan, Andrej/0000-0002-6736-7638; Cullen, Dave/0000-0002-0041-1606; Barber, Liam/0000-0002-7409-9352; Keatings, James Michael/0000-0003-4271-8021; SAYGI, BAHADIR/0000-0001-5406-506X; Greenlees, Paul/0000-0002-5986-5274; Spagnoletti, Pietro/0000-0002-7674-989X; Parr, Edward/0000-0001-6204-4461; Bondili, S Nara Singh/0000-0002-4096-2429
Excited states in the proton-unbound nuclide 158Ta
Excited states in the neutron-deficient odd-odd proton-unbound nuclide 158Ta have been investigated in two separate experiments. In the first experiment, 166Ir nuclei were produced in the reactions of 380 MeV 78Kr ions with an isotopically enriched 92Mo target. The α-decay chain of the 9+ state in 166Ir was analyzed. Fine structure in the α decay of the 9+ state in 162Re established a 66 keV difference in excitation energy between the lowest-lying 9+ and 10+ states in 158Ta. Higher-lying states in 158Ta were populated in the reactions of 255 MeV 58Ni ions with an isotopically enriched 102Pd target. Gamma-ray decay paths that populate, depopulate, and bypass a 19− isomeric state have been id…
Fine structure in the α decay of high-spin isomers in Lu155 and Hf156
Fine structure in the a decay of high-spin isomers in Lu-155( 25/2(-)) and Hf-156(8(+))has been studied for the first time using alpha gamma- coincidence analysis. Three new a decays from Lu-155(25 ...
Lifetime measurements in 166Re : Collective versus magnetic rotation
Lifetimes of excited states in the neutron-deficient odd-odd nucleus 166Re have been measured for the first time using the recoil distance Doppler-shift method. The measured lifetime for the (8−) state; τ = 480 (80) ps, enabled an assessment of the multipolarities of the γ rays depopulating this state. Information on electromagnetic transition strengths were deduced for the γ -ray transitions from the (9−), (10−), and (11−) states, and in the case of the (10−) and (11−) states limits on the B(M1) and B(E2) strengths were estimated. The results are compared with total Routhian surface predictions and semiclassical calculations. Tilted-axis cranking calculations based on a relativistic mean-f…
Production cross section and decay study of Es243 and Md249
In the study of the odd-$Z$, even-$N$ nuclei $^{243}$Es and $^{249}$Md, performed at the University of Jyv\"askyl\"a, the fusion-evaporation reactions $^{197}$Au($^{48}$Ca,2$n$)$^{243}$Es and $^{203}$Tl($^{48}$Ca,2$n$)$^{249}$Md have been used for the first time. Fusion-evaporation residues were selected and detected using the RITU gas-filled separator coupled with the focal-plane spectrometer GREAT. For $^{243}$Es, the recoil decay correlation analysis yielded a half-life of $24 \pm 3$s, and a maximum production cross section of $37 \pm 10$ nb. In the same way, a half-life of $26 \pm 1$ s, an $\alpha$ branching ratio of 75 $\pm$ 5%, and a maximum production cross section of 300 $\pm$ 80 nb…
Investigation into the Effects of Deformation on Proton Emission Rates via Lifetime Measurements
Identification of a 6.6μs isomeric state in Ir175
Collective rotation of an oblate nucleus at very high spin
International audience; A sequence of nine almost equidistant quadrupole transitions is observed in Nd137. The sequence represents an extremely regular rotational band that extends to a spin of about 75/2 and an excitation energy of ≈4.5MeV above yrast. Cranked mean-field calculations of the Nilsson-Strutinsky type suggest an oblate shape for the band. They reproduce the observed I(I+1) dependence of the rotational energy whereas predicting a pronounced decrease in the deformation, which is the hallmark of antimagnetic rotation.
De-excitation of the strongly coupled band in Au177 and implications for core intruder configurations in the light Hg isotopes
Excited states in the proton-unbound nuclide $^{177}$Au were populated in the $^92}$Mo($^{88}$Sr, p2n) reaction and identified using the Jurogam-II and GREAT spectrometers in conjunction with the RITU gas-filled separator at the University of Jyvaskyla Accelerator Laboratory. A strongly coupled band and its decay path to the 11/2−α-decaying isomer have been identified using recoil-decay tagging. Comparisons with cranked Hartree-Fock-Bogoliubov (HFB) calculations based on Skyrme energy functionals suggest that the band has a prolate deformation and is based upon coupling the odd 1h11/2 proton hole to the excited 02+ configuration in the $^{178}$Hg core. Although these configurations might be…
Evolution from γ-soft to stable triaxiality in 136Nd as a prerequisite of chirality
The level structure of 136Nd has been investigated using the 100Mo(40Ar, 4n) reaction and the JUROGAM II+RITU+GREAT setup. The level scheme has been extended significantly. Many new bands have been identified both at low and high spin, among which are five nearly degenerate bands interpreted as chiral partners. Excitation energies, spins, and parities of the previously known bands are revised and firmly established, and some previously known bands have been revised. Configurations are assigned to the observed bands based on cranked Nilsson-Strutinsky calculations. The band structure of 136Nd is now clarified and the various types of single-particle and collective excitations are well unders…
Identification of sub- μs isomeric states in the odd-odd nucleus Au178
The neutron-deficient gold (Z=79) isotopes in the vicinity of the neutron midshell N=104 provide prolific examples of shape coexistence and isomerism at low excitation energy. They can be probed via a number of different experimental techniques. In this study, two new isomeric states with half-lives of 294(7) and 373(9) ns have been observed in the neutron-deficient odd-odd nuclide Au178 (N=99) in an experiment at the RITU gas-filled separator at JYFL, Jyvaskyla. This result was achieved due to the use of a segmented planar germanium detector with a high efficiency at low energies. By applying the recoil-decay tagging technique, they were assigned to decay to two different long-lived α-deca…
Low-lying electromagnetic transition strengths in 180 Pt
Lifetime measurements have been performed using the 98 Mo ( 86 Kr , 4 n ) 180 Pt reaction at a beam energy of 380 MeV, and the recoil distance Doppler-shift method. In a second experiment the 168 Yb ( 16 O , 4 n ) 180 Pt reaction at a beam energy of 88 MeV using the Ge-gated γ − γ fast timing technique was used to determine lifetimes. Lifetimes of the four lowest yrast states of 180 Pt have been determined. The experimental data are compared to calculations within the framework of the interacting boson model and the general collective model. Both models predict a deformed ground state and are consistent with all the remaining experimental results. peerReviewed
Fine structure in the α decay of Lu156 and Ta158
Spin-dependent evolution of collectivity in 112Te
The evolution of collectivity with spin along the yrast line in the neutron-deficient nucleus 112Te has been studied by measuring the reduced transition probability of excited states in the yrast band. In particular, the lifetimes of the 4+ and 6+ excited states have been determined by using the recoil distance Doppler-shift method. The results are discussed using both large-scale shell-model and total Routhian surface calculations. peerReviewed
Detailed spectroscopy of 195Bi
An experiment focused on the study of shape coexistence and new high-spin structures in 195 Bi has been performed. The nucleus is in a transitional region of the bismuth isotope chain. A large number of new states have been found, resulting in a significant extension of the previously known level scheme. Several new collective structures have been identified. A strongly coupled rotational band built upon the 13 / 2 + isomeric state was extended up to I π = ( 49 / 2 + ) and an energy of 5706 keV. The I π = 31 / 2 + member of the π i 13 / 2 band was also found to feed a new long-lived isomeric state with an excitation energy of 2616 keV and a spin and parity of I π = 29 / 2 + . The half-life …
Lifetime measurements of excited states in Pt 172 and the variation of quadrupole transition strength with angular momentum
Lifetimes of the first excited 2þ and 4þ states in the extremely neutron-deficient nuclide 172Pt have been measured for the first time using the recoil-distance Doppler shift and recoil-decay tagging techniques. An unusually low value of the ratio BðE2∶4þ 1 → 2þ 1 Þ=BðE2∶2þ 1 → 0þ gsÞ ¼ 0.55ð19Þ was found, similar to a handful of other such anomalous cases observed in the entire Segr´e chart. The observation adds to a cluster of a few extremely neutron-deficient nuclides of the heavy transition metals with neutron numbers N ≈ 90–94 featuring the effect. No theoretical model calculations reported to date have been able to explain the anomalously low BðE2∶4þ 1 → 2þ 1 Þ=BðE2∶2þ 1 → 0þ gsÞ rati…
First identification of rotational band structures inRe9175166
Despite that it is more than 100 years since the atomic nucleus was first dis- covered by Ernest Rutherford and coworkers, many of its features still elude our understanding. The fact that the fundamental interactions between the nuclear constituents; nucleons, and ultimately quarks, are not yet known in detail, and the complexity of the nuclear many-body system compound the great challenges facing theoretical interpretations of experimental data. It is therefore important to focus on distinct phenomena where experimental mea- surements can be compared with theoretical predictions, providing stringent tests of theory. One such area is the nuclear phenomenology of collective excitations rela…
Population of a low-spin positive-parity band from high-spin intruder states in 177Au: The two-state mixing effect
The extremely neutron-deficient isotopes 177,179Au were studied by means of in-beam ?-ray spectroscopy. Specific tagging techniques, ?-decay tagging in 177Au and isomer tagging in 179Au, were used for these studies. Feeding of positive-parity, nearly spherical states, which are associated with 2d3/2 and 3s1/2 proton-hole configurations, from the 1i13/2 proton-intruder configuration was observed in 177Au. Such a decay path has no precedent in odd-Au isotopes and it is explained by the effect of mixing of wave functions of the initial state. © 2020
Delayed or absent π(h11/2)2 alignment in Xe111
Decay and Fission Hindrance of Two- and Four-QuasiparticleKIsomers inRf254
Two isomers decaying by electromagnetic transitions with half-lives of 4.7(1.1) and 247(73) μs have been discovered in the heavy ^{254}Rf nucleus. The observation of the shorter-lived isomer was made possible by a novel application of a digital data acquisition system. The isomers were interpreted as the K^{π}=8^{-}, ν^{2}(7/2^{+}[624],9/2^{-}[734]) two-quasineutron and the K^{π}=16^{+}, 8^{-}ν^{2}(7/2^{+}[624],9/2^{-}[734])⊗8^{-}π^{2}(7/2^{-}[514],9/2^{+}[624]) four-quasiparticle configurations, respectively. Surprisingly, the lifetime of the two-quasiparticle isomer is more than 4 orders of magnitude shorter than what has been observed for analogous isomers in the lighter N=150 isotones. …
High-Kfour-quasiparticle states inGd138
States above the known ${K}^{\ensuremath{\pi}}={8}^{\ensuremath{-}}$ 6 $\ensuremath{\mu}$s isomer in $^{138}\mathrm{Gd}$ have been populated with the $^{106}\mathrm{Cd}$($^{36}\mathrm{Ar}$,$2p2n$) reaction at a beam energy of 180 MeV at the University of Jyv\"askyl\"a, Finland. The recoil-isomer tagging technique was utilized to correlate delayed $\ensuremath{\gamma}$-ray decays, detected in the GREAT focal plane spectrometer, with prompt decays measured in the JUROGAM II spectrometer at the target position. The lifetime of the ${K}^{\ensuremath{\pi}}={8}^{\ensuremath{-}}$ isomeric state has been remeasured as 6.2(2) $\ensuremath{\mu}$s. Two high-lying strongly coupled bands have been estab…
High-spin states of $^{218}$Th
Abstract High-spin states in the N = 128 nucleus 218Th have been investigated following fusion–evaporation reactions, using the recoil-decay tagging technique. Due to the short-lived nature of the ground state of 218Th prompt γ rays have been correlated with the α decay of the daughter nucleus 214Ra. The level scheme representing the decay of excited states has been extended to (16+) with the observation of six previously unreported transitions. The observations are compared with the results of shell model calculations and within the context of the systematics of neighbouring nuclei.
Isomer-tagged differential-plunger measurements in 113Xe
The 278-keV M2 γ decay from the νh11/2 isomeric state in 113Xe has been observed for the first time using the recoil-isomer tagging technique. The half-life of the isomer has been measured to be 6.9(3) μs. The derived B(M2) value is in agreement with the trend of systematic measurements of M2 transition strengths in neutron-deficient tellurium and tin isotopes. The lifetime of the first excited state in the νh11/2 band has been measured using the recoil distance Doppler-shift method. The extracted B(E2) value has been compared to theoretical CD-Bonn calculations and recent lifetime measurements in 109Te. This comparison of B(E2) values has been used to shed light on the possible influence o…
Competing single-particle and collective states in the low-energy structure of 113I
To understand the low-energy structure of the neutron deficient iodine isotopes, lifetimes for the low-lying 9/2+ and 11/2+ positive-parity states in 113I have been measured as τ = 28(4) ps and τ = 3.7(7) ps, respectively. The lifetime for the 11/2− state, which feeds the 9/2+ and 11/2+ states, was remeasured with improved accuracy as τ = 216(7) ps. The reduced transition probability, B(E2) = 32(5) W.u., for the 9/2+ → 5/2+ transition agrees with that calculated within the shell model using a Hamiltonian based on the charge-dependent Bonn nucleon-nucleon interaction. In contrast, the much larger transition probability, B(E2) = 209(39) W.u., measured for the 11/2+ → 7/2+ transition has been …
Deformation of the proton emitterCs113from electromagnetic transition and proton-emission rates
The lifetime of the $(11/{2}^{+})$ state in the band above the proton-emitting $(3/{2}^{+})$ state in $^{113}\mathrm{Cs}$ has been measured to be $\ensuremath{\tau}=24(6)$ ps from a recoil-decay-tagged differential-plunger experiment. The measured lifetime was used to deduce the deformation of the states using wave functions from a nonadiabatic quasiparticle model to independently calculate both proton-emission and electromagnetic $\ensuremath{\gamma}$-ray transition rates as a function of deformation. The only quadrupole deformation, which was able to reproduce the experimental excitation energies of the states, the electromagnetic decay rate of the $(11/{2}^{+})$ state and the proton-emis…
Lifetime measurements of excited states in W162 and W164 and the evolution of collectivity in rare-earth nuclei
Lifetimes of the first excited 2(+) states in the extremely neutron- deficient W-162 and W-164 nuclei have been measured using the recoil distance Doppler shift technique. Experimental B(E2) data f ...
Spectroscopy of proton-rich 66^Se up to J^�� = 6^+: isospin-breaking effect in the A = 66 isobaric triplet
Candidates for three excited states in the 66^Se have been identified using the recoil-�� tagging method together with a veto detector for charged-particle evaporation channels. These results allow a comparison of mirror and triplet energy differences between analogue states across the A = 66 triplet as a function of angular momentum. The extracted triplet energy differences follow the negative trend observed in the f_7/2 shell. Shell-model calculations indicate a continued need for an additional isospin non-conserving interaction in addition to the Coulomb isotensor part as a function of mass.
Spectroscopy of At 201 including the observation of a shears band and the 29/2 + isomeric state
The excited states of 201At were studied and an isomeric 29/2 + state [T1/2 = 3.39(9) μs] was identified by using a fusion-evaporation reaction, a gas-filled recoil separator, and recoil gating techniques. The 29/2 + state is suggested to originate from the π(h9/2) ⊗ |200Po;11− configuration, and it decays through the 269- and 339-keV E2- and E3-type transitions, respectively. Moreover, a cascade of magnetic dipole transitions that is suggested to originate from a shears band was observed by using recoil-gated γ − γ (−γ ) coincidence techniques. peerReviewed
Determining the lifetime of the first 4⁺ state in ¹⁸²Pt
In this work the mean lifetime of the First 4+ state in 182Pt was determined by using the Recoil Distance Doppler-Shift method. The studied nuclei were produced in the 86Kr(100Mo, 4n)182Pt fusion-evaporation reaction. The RDDS method exploits the fact that the observed γ-ray energy depends on the velocity of the emitting nucleus. Using a degrader foil after the target enables measuring the intensities of γ-rays emitted before and after the degrader. The recoil-gated γγ spectra were analyzed separately for each target-to-degrader distance and the lifetime was determined with the Differential Decay Curve Method, which takes into account the lifetimes of the feeding states. The lifetime of the…
Chirality of $^{135}$Nd reexamined: Evidence for multiple chiral doublet bands
One new pair of positive-parity chiral doublet bands have been identified in the odd-$A$ nucleus $^{135}$Nd which together with the previously reported negative-parity chiral doublet bands constitute a third case of multiple chiral doublet (M$\chi$D) bands in the $A\approx130$ mass region. The properties of the M$\chi$D bands are well reproduced by constrained covariant density functional theory and particle rotor model calculations. The newly observed M$\chi$D bands in $^{135}$Nd represents an important milestone in supporting the existence of M$\chi$D in nuclei.