0000000000137742

AUTHOR

Gabriella Carini

Material quality characterization of CdZnTe substrates for HgCdTe epitaxy

research product

Volume IV The DUNE far detector single-phase technology

This document was prepared by the DUNE collaboration using the resources of the Fermi National Accelerator Laboratory (Fermilab), a U.S. Department of Energy, Office of Science, HEP User Facility. Fermilab is managed by Fermi Research Alliance, LLC (FRA), acting under Contract No. DE-AC02-07CH11359. The DUNE collaboration also acknowledges the international, national, and regional funding agencies supporting the institutions who have contributed to completing this Technical Design Report.

research product

First results on ProtoDUNE-SP liquid argon time projection chamber performance from a beam test at the CERN Neutrino Platform

The ProtoDUNE-SP detector was constructed and operated on the CERN Neutrino Platform. We thank the CERN management for providing the infrastructure for this experiment and gratefully acknowledge the support of the CERN EP, BE, TE, EN, IT and IPT Departments for NP04/ProtoDUNE-SP. This documentwas prepared by theDUNEcollaboration using the resources of the Fermi National Accelerator Laboratory (Fermilab), a U.S. Department of Energy, Office of Science, HEP User Facility. Fermilab is managed by Fermi Research Alliance, LLC (FRA), acting under Contract No. DE-AC02-07CH11359. This work was supported by CNPq, FAPERJ, FAPEG and FAPESP, Brazil; CFI, IPP and NSERC, Canada; CERN; MSMT, Czech Republi…

research product

Neutrino interaction classification with a convolutional neural network in the DUNE far detector

The Deep Underground Neutrino Experiment is a next-generation neutrino oscillation experiment that aims to measure CP-violation in the neutrino sector as part of a wider physics program. A deep learning approach based on a convolutional neural network has been developed to provide highly efficient and pure selections of electron neutrino and muon neutrino charged-current interactions. The electron neutrino (antineutrino) selection efficiency peaks at 90% (94%) and exceeds 85% (90%) for reconstructed neutrino energies between 2–5 GeV. The muon neutrino (antineutrino) event selection is found to have a maximum efficiency of 96% (97%) and exceeds 90% (95%) efficiency for reconstructed neutrino…

research product

New results from testing of coplanar-grid CdZnTe detectors

New results from studies of coplanar-grid CdZnTe (CZT) detectors are presented. The coplanar-grid detectors were investigated by using a highly collimated X-ray beam available at Brookhaven's National Synchrotron Light Source and by applying a pulse-shape analysis. The coplanar-grid detector operates as a single-carrier device. Despite the fact that its operational principle is well known and has been investigated by many groups in the past, we found some new details that may explain the performance limits of these types of devices. The experimental results have been confirmed by extensive computer modeling.

research product

High-energy X-ray diffraction and topography investigation of CdZnTe

High-energy transmission x-ray diffraction techniques have been applied to investigate the crystal quality of CdZnTe (CZT). CdZnTe has shown excellent performance in hard x-ray and gamma detection; unfortunately, bulk nonuniformities still limit spectroscopic properties of CZT detectors. Collimated high-energy x-rays, produced by a superconducting wiggler at the National Synchrotron Light Source’s X17B1 beamline, allow for a nondestructive characterization of thick CZT samples (2–3 mm). In order to have complete information about the defect distribution and strains in the crystals, two series of experiments have been performed. First, a monochromatic 67 keV x-ray beam with the size of 300×3…

research product

The effects of precipitates on CdZnTe device performance

A high-intensity X-ray beam collimated down to a 10-micrometer spot size, available at Brookhaven's National Synchrotron Light Source (NSLS), was employed to perform X-ray mapping to measure the correlation between microscopic defects (precipitates) and variations in the collected charges in long-drift CdZnTe (CZT) detectors. First, we use X-ray diffraction topography (XDT) measurements at the high-energy beamline and IR microscopy to identify the defects distribution and strains in the bulk of CZT crystals. Then, we perform X-ray raster scans of the CZT detectors to measure their responses with 10-micrometer spatial resolution. The brightness of the source allows for good statistics in ver…

research product

Volume I. Introduction to DUNE

Journal of Instrumentation 15(08), T08008 (1-228) (2020). doi:10.1088/1748-0221/15/08/T08008

research product

Material quality characterization of CdZnTe substrates for HgCdTe epitaxy

Cd1−xZnxTe (CZT) substrates were studied to investigate their bulk and surface properties. Imperfections in CZT substrates affect the quality of Hg1−xCdxTe (MCT) epilayers deposited on them and play a role in limiting the performance of infrared (IR) focal plane arrays. CZT wafers were studied to investigate their bulk and surface properties. Transmission and surface x-ray diffraction techniques, utilizing both a conventional closed-tube x-ray source as well as a synchrotron radiation source, and IR transmission micro-spectroscopy, were used for bulk and surface investigation. Synchrotron radiation offers the capability to combine good spatial resolution and shorter exposure times than conv…

research product

Volume III. DUNE far detector technical coordination

The preponderance of matter over antimatter in the early universe, the dynamics of the supernovae that produced the heavy elements necessary for life, and whether protons eventually decay-these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our universe, its current state, and its eventual fate. The Deep Underground Neutrino Experiment (DUNE) is an international world-class experiment dedicated to addressing these questions as it searches for leptonic charge-parity symmetry violation, stands ready to capture supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the st…

research product