0000000000138219

AUTHOR

Oleksandr Koshchii

Reduced uncertainty of the axial $\gamma Z$-box correction to the proton's weak charge

We present the fully up-to-date calculation of the $\gamma Z$-box correction which needs to be taken into account to determine the weak mixing angle at low energies from parity-violating electron proton scattering. We make use of neutrino and antineutrino inclusive scattering data to predict the parity-violating structure function $F_3^{\gamma Z}$ by isospin symmetry. Our new analysis confirms previous results for the axial contribution to the $\gamma Z$-box graph, and reduces the uncertainty by a factor of~2. In addition, we note that the presence of parity-violating photon-hadron interactions induces an additional contribution via $F_3^{\gamma \gamma}$. Using experimental and theoretical …

research product

Weak charge and weak radius of C12

We present a feasibility study of a simultaneous subpercent extraction of the weak charge and the weak radius of the $^{12}\mathrm{C}$ nucleus using parity-violating electron scattering, based on a largely model-independent assessment of the uncertainties. The corresponding measurement is considered to be carried out at the future MESA facility in Mainz with ${E}_{\mathrm{beam}}=155\phantom{\rule{0.28em}{0ex}}\mathrm{MeV}$. We find that a combination of a 0.3% precise measurement of the parity-violating asymmetry at forward angles with a 10% measurement at backward angles will allow to determine the weak charge and the weak radius of $^{12}\mathrm{C}$ with 0.4% and 0.5% precision, respectiv…

research product

Reduced uncertainty of the axial γZ-box diagram correction to the proton’s weak charge

We present the fully up-to-date calculation of the γZ-box correction which needs to be taken into account to determine the weak mixing angle at low energies from parity-violating electron proton scattering. We make use of neutrino and antineutrino inclusive scattering data to predict the parity-violating structure function F3γZ by isospin symmetry. Our new analysis confirms previous results for the axial contribution to the γZ-box graph and reduces the uncertainty by a factor of 2. In addition, we note that the presence of parity-violating photon-hadron interactions induces an additional contribution via F3γγ. Using experimental and theoretical constraints on the nucleon anapole moment we a…

research product

Beam-normal single-spin asymmetry in elastic scattering of electrons from a spin-0 nucleus

We study the beam-normal single-spin asymmetry (BNSSA) in high-energy elastic electron scattering from several spin-0 nuclei. Existing theoretical approaches work in the plane-wave formalism and predict the BNSSA to scale as $\ensuremath{\sim}A/Z$ with the atomic number $Z$ and nuclear mass number $A$. While this prediction holds for light and intermediate nuclei, a striking disagreement in both the sign and the magnitude of BNSSA was observed by the PREX collaboration for $^{208}\mathrm{Pb}$, coined the ``PREX puzzle.'' To shed light on this disagreement, we go beyond the plane-wave approach which neglects Coulomb distortions known to be significant for heavy nuclei. We explicitly investig…

research product

Lepton mass effects for beam-normal single-spin asymmetry in elastic muon-proton scattering

We estimate the beam-normal single-spin asymmetry in elastic lepton-proton scattering without employing the ultrarelativistic approximation. Our calculation is relevant for analyses of muon scattering at energies of few hundred MeV and below -- when effects of the muon mass become essential. At such energies, the transverse polarization of the muon beam is expected to contribute significantly to the systematic uncertainty of precision measurements of elastic muon-proton scattering. We evaluate such systematics using an example of the MUSE experiment at PSI. The muon asymmetry is estimated at about 0.1\% in kinematics of MUSE and it is the largest for scattering into a backward hemisphere.

research product

Weak charge and weak radius of ${}^{12}$C

We present a feasibility study of a simultaneous sub-percent extraction of the weak charge and the weak radius of the ${}^{12}$C nucleus using parity-violating electron scattering, based on a largely model-independent assessment of the uncertainties. The corresponding measurement is considered to be carried out at the future MESA facility in Mainz with $E_{\rm beam} = 155$ MeV. We find that a combination of a $0.3\%$ precise measurement of the parity-violating asymmetry at forward angles with a $10\%$ measurement at backward angles will allow to determine the weak charge and the weak radius of ${}^{12}$C with $0.4\%$ and $0.5\%$ precision, respectively. These values could be improved to $0.…

research product