0000000000138903

AUTHOR

T. Rajagopala Rao

A comparative account of quantum dynamics of the H+ + H2 reaction at low temperature on two different potential energy surfaces

Rotationally resolved reaction probabilities, integral cross sections, and rate constant for the H+ + H2 (v = 0, j = 0 or 1) → H2 (v′ = 0, j′) + H + reaction are calculated using a time-independent quantum mechanical method and the potential energy surface of Kamisaka et al. [J. Chem. Phys.116, 654 (2002)] (say KBNN PES). All partial wave contributions of the total angular momentum, J, are included to obtain converged cross sections at low collision energies and rate constants at low temperatures. In order to test the accuracy of the KBNN PES, the results obtained here are compared with those obtained in our earlier work [P. Honvault et al. , Phys. Rev. Lett.107, 023201 (2011)] using the ac…

research product

Quantum dynamics of 16O + 36O2 and 18O + 32O2 exchange reactions

We present quantum dynamical investigations of (16)O + (36)O2 and (18)O + (32)O2 exchange reactions using a time-independent quantum mechanical method and an accurate global potential energy surface of ozone [Dawes et al., J. Chem. Phys. 135, 081102 (2011)]. Initial state-selected integral cross sections, rate constants, and Boltzmann averaged thermal rate constants are obtained and compared with earlier experimental and theoretical results. The computed thermal rate constants for the oxygen exchange reactions exhibit a negative temperature dependence, as found experimentally. They are in better agreement with the experiments than the previous studies on the same reactions.

research product