0000000000139060

AUTHOR

Han Ju Lee

0000-0001-9523-2987

showing 5 related works from this author

THE BISHOP-PHELPS-BOLLOBAS PROPERTY FOR HERMITIAN FORMS ON HILBERT SPACES

2013

Pure mathematicssymbols.namesakeHilbert manifoldProperty (philosophy)General MathematicsTopological tensor productHilbert spacesymbolsRigged Hilbert spaceHermitian matrixMathematicsThe Quarterly Journal of Mathematics
researchProduct

On the Bishop–Phelps–Bollobás theorem for multilinear mappings

2017

Abstract We study the Bishop–Phelps–Bollobas property and the Bishop–Phelps–Bollobas property for numerical radius. Our main aim is to extend some known results about norm or numerical radius attaining operators to multilinear and polynomial cases. We characterize the pair ( l 1 ( X ) , Y ) to have the BPBp for bilinear forms and prove that on L 1 ( μ ) the numerical radius and the norm of a multilinear mapping are the same. We also show that L 1 ( μ ) fails the BPBp-nu for multilinear mappings although L 1 ( μ ) satisfies it in the operator case for every measure μ.

Discrete mathematicsNumerical AnalysisMultilinear mapAlgebra and Number Theory010102 general mathematicsBilinear form01 natural sciences010101 applied mathematicsOperator (computer programming)Discrete Mathematics and CombinatoricsGeometry and Topology0101 mathematicsBishop–Phelps theoremMathematicsLinear Algebra and its Applications
researchProduct

The Bishop–Phelps–Bollobás point property

2016

Abstract In this article, we study a version of the Bishop–Phelps–Bollobas property. We investigate a pair of Banach spaces ( X , Y ) such that every operator from X into Y is approximated by operators which attain their norm at the same point where the original operator almost attains its norm. In this case, we say that such a pair has the Bishop–Phelps–Bollobas point property (BPBpp). We characterize uniform smoothness in terms of BPBpp and we give some examples of pairs ( X , Y ) which have and fail this property. Some stability results are obtained about l 1 and l ∞ sums of Banach spaces and we also study this property for bilinear mappings.

Mathematics::Functional AnalysisApplied Mathematics010102 general mathematicsBanach spaceBilinear interpolationStability resultBilinear form01 natural sciences010101 applied mathematicsCombinatoricsOperator (computer programming)Norm (mathematics)0101 mathematicsBishop–Phelps theoremAnalysisMathematicsJournal of Mathematical Analysis and Applications
researchProduct

The Bishop-Phelps-Bollobás property for bilinear forms and polynomials

2014

For a $\sigma$-finite measure $\mu$ and a Banach space $Y$ we study the Bishop-Phelps-Bollobás property (BPBP) for bilinear forms on $L_1(\mu)\times Y$, that is, a (continuous) bilinear form on $L_1(\mu)\times Y$ almost attaining its norm at $(f_0,y_0)$ can be approximated by bilinear forms attaining their norms at unit vectors close to $(f_0,y_0)$. In case that $Y$ is an Asplund space we characterize the Banach spaces $Y$ satisfying this property. We also exhibit some class of bilinear forms for which the BPBP does not hold, though the set of norm attaining bilinear forms in that class is dense.

norm attainingPolynomialMathematics::Functional AnalysisProperty (philosophy)Banach spacepolynomialGeneral MathematicsBanach spaceBilinear formAlgebra46B2046B22Bishop-Phelps-Bollobás Theorembilinear form46B25Mathematics
researchProduct

A non-linear Bishop–Phelps–BollobÁs type theorem

2018

CombinatoricsNonlinear systemGeneral Mathematics010102 general mathematics0103 physical sciences010307 mathematical physics0101 mathematicsType (model theory)01 natural sciencesMathematicsThe Quarterly Journal of Mathematics
researchProduct