0000000000139433
AUTHOR
P. Merz
Measurement of the transverse Doppler shift using a stored relativistic7Li+ ion beam
We have performed for the first time precision spectroscopy on a coasting fast7Li+ ion beam in a storage ring. The ion beam moving with 6.4% speed of light was first electron cooled and then merged with two counterpropagating laser beams acting on two different hyperfine transitions sharing a common upper level (λ-system). One laser was frequency locked to thea 3 127J2 hfs frequency component established as a secondary frequency standard at 514 nm. The second laser was tuned over theλ-resonance, which was recorded relative to127J2 hfs components. This experiment is sensitive to the time dilation in fast moving frames and will lead to new limits for the verification of special relatively. Th…
A test of special relativity with stored lithium ions
Laser spectroscopy at the heavy ion storage ring TSR in Heidelberg allows for precision experiments testing the limits of the special theory of relativity. With an opticalΛ-type three-level system of7Li+ the Doppler shift has been measured by saturation spectroscopy as a test of the time dilatation factor γ = (1 −β2)−1/2 at an ion velocity ofυ = 6.4% c. A precision ofΔν/ν < 9 × 10−9 has been obtained, which sets a second-order limit of 1.1 × 10−6 for any deviation from the time dilatation factor. The fourth-order limit of this deviation is set below 2.7 × 10−4 by the present experiment. These limits are given at a 1 σ confidence level.
Transverse laser cooling of a radio-frequency bunched ion beam in the storage ring TSR
Abstract We report on the observation of the indirect transverse laser cooling effect in a radio-frequency bunched beam of 7.3 MeV 9 Be + ions, stored in the Heidelberg Test Storage Ring and subject to direct longitudinal laser cooling. This bunched scheme offers particular advantages for producing ultracold beams with unprecedented phase-space densities.
Precision measurement of two iodine lines at 585 nm and 549 nm
The transition frequencies of thei-component of the R(99)15-1 and thew-component of the R(85)26-0 transition in the B-X system of molecular127I2 have been determined with an overall relative standard uncertainty of 1.3 · 10−10. For this purpose a commercial linear dye laser has been modified and stabilized to the corresponding iodine line. This dye laser serves as a transportable frequency standard which is compared with the wavelength standards of the PTB. The evaluation of an experiment for testing special relativity at the test storage ring (TSR) in Heidelberg is based on the precision of the reported interferometric wavelength comparison.
LASER SPECTROSCOPY WITH A COOLER RING AT THE ESR (GSI) AND THE TSR (MPI HEIDELBERG)
At the TSR cooler ring at Heidelberg, laser studies were carried out using singly charged lithium and beryllium ions. Laser spectroscopy of relativistic lithium ions (v=0.04c) yielded signals with a narrow linewidth, suitable for an experimental test of special relativity. A dramatic reduction of the beam temperature, as defined by the longitudinal velocity spread, was achieved via laser cooling in both cases. At the ion energies available at ESR it will become possible to prepare and store bare ions up to U92+. Electron cooling was succesfully demonstrated for hydrogen-like Bi82+ ions, where a laser experiment is scheduled to study the ground-state hyperfine splitting.
Test of Special Relativity in a Heavy Ion Storage Ring
New access to the magnetic moment distribution in the nucleus by laser spectroscopy of highly charged ions
Abstract The availability of high intensity, high quality beams of highly charged ions has started a new application for laser spectroscopy. High resolution spectroscopy can now be applied to a study of hydrogen-like atomic states in heavy elements. In principal, this will allow a determination of the hyperfine splitting with an accuracy in the 10 −6 -range or better. Presently this exceeds the limits given by the uncertainties of the nuclear quantities, especially the distribution of the nuclear magnetization in the nucleus. Since the new approach can be applied to a family of test cases, it can provide a wide experimental basis for the separation of nuclear and QED effects. This is especi…
Ion beam preparation of 7Li+ for precision experiments at heavy ion storage rings
Abstract Heavy ion storage rings allow for tests of the structure of local space time via the Doppler effect. At the TSR/Heidelberg an experiment with high resolution laser spectroscopy at 7 Li + is performed. To gain the maximum resolution for saturation spectroscopy new methods of relativistic ion beam preparation and diagnostics have been developed. The laser cooling of the beam allows for precision determination of the mean velocity of the ions. A novel phase synchronous detection scheme, ultimately sensitive to single ions, gives insights into the cooling mechanism and dynamics. With an additional synchronous excitation scheme systematic uncertainties of the test experiment can be dras…
Test of special relativity in an ion storage ring
An accurate measurement of the Doppler effect in collinear laser spectroscopy has been performed at the TSR storage ring with electron cooled7Li+ ions atΒ=0.064. This experiment is a sensitive test of theγ=(1−Β2)−1/2 factor(Β=v/c) in the special theory of relativity. The Doppler shifted frequencies of the moving7Li+ ions are compared with calibrated molecular lines at rest. The frequencies at rest for the7Li+ ions are known from independent measurements. The Doppler shifted frequencies in the collinear experiment have been measured with a precision ofδv/v=6×10−9, mainly limited by the signal width of the resonance. A corresponding upper limit of 8×10−7 is deduced for any deviation of the ti…