0000000000139528
AUTHOR
F. Bisso
Stability of the heaviest elements: K isomer in No250
Decay spectroscopy of No250 has been performed using digital electronics and pulse-shape analysis of the fast nuclear decays for the first time. Previous studies of No250 reported two distinct fission decay lifetimes, related to the direct fission of the ground state and to the decay of an isomeric state but without the possibility to determine if the isomeric state decayed directly via fission or via internal electromagnetic transitions to the ground state. The data obtained in the current experiment allowed the puzzle to finally be resolved, attributing the shorter half-life of t1/2=3.8±0.3μs to the ground state and the longer half-life t1/2=34.9−3.2+3.9μs to the decay of an isomeric stat…
Stability of the heaviest elements : K isomer in 250No
Decay spectroscopy of 250No has been performed using digital electronics and pulse-shape analysis of the fast nuclear decays for the first time. Previous studies of 250No reported two distinct fission decay lifetimes, related to the direct fission of the ground state and to the decay of an isomeric state but without the possibility to determine if the isomeric state decayed directly via fission or via internal electromagnetic transitions to the ground state. The data obtained in the current experiment allowed the puzzle to finally be resolved, attributing the shorter half-life of t1/2 = 3.8 ± 0.3 μs to the ground state and the longer half-life t1/2 = 34.9+3.9 −3.2 μs to the decay of an isom…
A time-of-flight correction procedure for fast-timing data of recoils with varying implantation positions at a spectrometer focal plane
Abstract Fast-timing measurements at the focal plane of a separator can suffer from poor timing resolution. This is due to the variations in time-of-flight (ToF) for photons travelling to a given detector, which arise from the changes in the implantation positions of the recoil nuclei emitting the γ rays of interest. In order to minimise these effects on timing measurements, a procedure is presented that improves fast-timing data by performing ToF corrections on an event-by-event basis. This method was used to correct data collected with an array of eight LaBr 3 detectors, which detected γ rays from spatially distributed 138Gd recoil-implants at the focal plane of the Recoil-Ion-Transport-U…