Antigens expressed by myelinating glia cells induce peripheral cross‐tolerance of endogenous CD8+T cells
Auto-reactivity of T cells is largely prevented by central and peripheral tolerance. Nevertheless, immunization with certain self-antigens emulsified in CFA induces autoimmunity in rodents, suggesting that tolerance to some self-antigens is not robust. To investigate the fate of nervous system-specific CD8(+) T cells, which only recently came up as being important contributors for MS pathogenesis, we developed a mouse model that allows inducible expression of lymphocytic choriomeningitis virus-derived CD8(+) T-cell epitopes specifically in oligodendrocytes and Schwann cells, the myelinating glia of the nervous system. These transgenic CD8(+) T-cell epitopes induced robust tolerance of endog…
Type I Interferon Protects Antiviral CD8+ T Cells from NK Cell Cytotoxicity
Summary Despite development of new antiviral drugs, viral infections are still a major health problem. The most potent antiviral defense mechanism is the innate production of type I interferon (IFN-I), which not only limits virus replication but also promotes antiviral T cell immunity through mechanisms, which remain insufficiently studied. Using the murine lymphocytic choriomeningitis virus model system, we show here that IFN-I signaling on T cells prevented their rapid elimination in vivo. Microarray analyses uncovered that IFN-I triggered the expression of selected inhibitory NK-cell-receptor ligands. Consequently, T cell immunity of IFN-I receptor (IFNAR)-deficient T cells could be rest…