0000000000139708
AUTHOR
Juan B. Seoane-sepúlveda
On the zero-set of 2-homogeneous polynomials in Banach spaces
ABSTRACTGiving a partial answer to a conjecture formulated by Aron, Boyd, Ryan and Zalduendo, we show that if a real Banach space X is not linearly and continuously injected into a Hilbert space, t...
Infinite Dimensional Banach spaces of functions with nonlinear properties
The aim of this paper is to show that there exist infinite dimensional Banach spaces of functions that, except for 0, satisfy properties that apparently should be destroyed by the linear combination of two of them. Three of these spaces are: a Banach space of differentiable functions on R(n) failing the Denjoy-Clarkson property; a Banach space of non Riemann integrable bounded functions, but with antiderivative at each point of an interval; a Banach space of infinitely differentiable functions that vanish at infinity and are not the Fourier transform of any Lebesgue integrable function.
When is the Haar measure a Pietsch measure for nonlinear mappings?
We show that, as in the linear case, the normalized Haar measure on a compact topological group $G$ is a Pietsch measure for nonlinear summing mappings on closed translation invariant subspaces of $C(G)$. This answers a question posed to the authors by J. Diestel. We also show that our result applies to several well-studied classes of nonlinear summing mappings. In the final section some problems are proposed.
Discontinuous, although “highly” differentiable, real functions and algebraic genericity
Abstract We exhibit a class of functions f : R → R which are bounded, continuous on R ∖ Q , left discontinuous on Q , right differentiable on Q , and upper left Dini differentiable on R ∖ Q . Other properties of these functions, such as jump sizes and local extrema, are also discussed. These functions are constructed using probabilistic methods. We also show that the families of functions satisfying similar properties contain large algebraic structures (obtaining lineability, algebrability and coneability).