0000000000140000

AUTHOR

David Chartier

Evidence for H2S gas as an intermediate species in the reaction mechanism of trapping hydrogen by cobalt disulfide

Cobalt sulfide prepared by aqueous precipitation using Na2S and a Co(II) salt is known to trap hydrogen at room temperature and low pressure. The importance of oxidation of the primary CoS precipitate with atmospheric oxygen with respect to its efficiency as a hydrogen absorber is demonstrated. This stage of oxidation produces a mixture of two solid phases: a partially crystallized cobalt hydroxide Co(OH)2 and an amorphous cobalt sulfide CoS2 with a Co(OH)2/CoS2 molar ratio of 1 as predicted by thermodynamics. This biphasic product is probably the basic cobalt sulfide CoSOH considered in older and even more recent work. This product traps molecular hydrogen with a H2/Co molar ratio of 0.5 w…

research product

Hydrogen trapping: Synergetic effects of inorganic additives with cobalt Sulfide absorbers and reactivity of cobalt polysulfide

International audience; The biphasic product CoS2 + Co(OH)(2) obtained by oxidation of cobalt sulfide is known to trap hydrogen at room temperature and low pressure according to a balanced reduction equation. Adding various inorganic compounds to this original absorber induces their reduction by hydrogen in the same conditions at a significant rate: (i) excess cobalt hydroxide is reduced to metallic cobalt; (ii) nitrate ions are reduced to ammonia; (iii) sulfur and sodium thiosulfate are reduced to H2S or NaHS and Na2S, respectively. Without a hydrogen absorber these inorganic compounds are not reduced by H-2, suggesting synergetic effects involving H-2 and the hydrogen absorber. Amorphous …

research product