Evidence for H2S gas as an intermediate species in the reaction mechanism of trapping hydrogen by cobalt disulfide
Cobalt sulfide prepared by aqueous precipitation using Na2S and a Co(II) salt is known to trap hydrogen at room temperature and low pressure. The importance of oxidation of the primary CoS precipitate with atmospheric oxygen with respect to its efficiency as a hydrogen absorber is demonstrated. This stage of oxidation produces a mixture of two solid phases: a partially crystallized cobalt hydroxide Co(OH)2 and an amorphous cobalt sulfide CoS2 with a Co(OH)2/CoS2 molar ratio of 1 as predicted by thermodynamics. This biphasic product is probably the basic cobalt sulfide CoSOH considered in older and even more recent work. This product traps molecular hydrogen with a H2/Co molar ratio of 0.5 w…
Hydrogen trapping: Synergetic effects of inorganic additives with cobalt Sulfide absorbers and reactivity of cobalt polysulfide
International audience; The biphasic product CoS2 + Co(OH)(2) obtained by oxidation of cobalt sulfide is known to trap hydrogen at room temperature and low pressure according to a balanced reduction equation. Adding various inorganic compounds to this original absorber induces their reduction by hydrogen in the same conditions at a significant rate: (i) excess cobalt hydroxide is reduced to metallic cobalt; (ii) nitrate ions are reduced to ammonia; (iii) sulfur and sodium thiosulfate are reduced to H2S or NaHS and Na2S, respectively. Without a hydrogen absorber these inorganic compounds are not reduced by H-2, suggesting synergetic effects involving H-2 and the hydrogen absorber. Amorphous …