0000000000140279
AUTHOR
Nicolai Oetter
Motion Artifact Detection in Confocal Laser Endomicroscopy Images
Confocal Laser Endomicroscopy (CLE), an optical imaging technique allowing non-invasive examination of the mucosa on a (sub)- cellular level, has proven to be a valuable diagnostic tool in gastroenterology and shows promising results in various anatomical regions including the oral cavity. Recently, the feasibility of automatic carcinoma detection for CLE images of sufficient quality was shown. However, in real world data sets a high amount of CLE images is corrupted by artifacts. Amongst the most prevalent artifact types are motion-induced image deteriorations. In the scope of this work, algorithmic approaches for the automatic detection of motion artifact-tainted image regions were develo…
Patch-based Carcinoma Detection on Confocal Laser Endomicroscopy Images -- A Cross-Site Robustness Assessment
Deep learning technologies such as convolutional neural networks (CNN) provide powerful methods for image recognition and have recently been employed in the field of automated carcinoma detection in confocal laser endomicroscopy (CLE) images. CLE is a (sub-)surface microscopic imaging technique that reaches magnifications of up to 1000x and is thus suitable for in vivo structural tissue analysis. In this work, we aim to evaluate the prospects of a priorly developed deep learning-based algorithm targeted at the identification of oral squamous cell carcinoma with regard to its generalization to further anatomic locations of squamous cell carcinomas in the area of head and neck. We applied the…
Transferability of Deep Learning Algorithms for Malignancy Detection in Confocal Laser Endomicroscopy Images from Different Anatomical Locations of the Upper Gastrointestinal Tract
Squamous Cell Carcinoma (SCC) is the most common cancer type of the epithelium and is often detected at a late stage. Besides invasive diagnosis of SCC by means of biopsy and histo-pathologic assessment, Confocal Laser Endomicroscopy (CLE) has emerged as noninvasive method that was successfully used to diagnose SCC in vivo. For interpretation of CLE images, however, extensive training is required, which limits its applicability and use in clinical practice of the method. To aid diagnosis of SCC in a broader scope, automatic detection methods have been proposed. This work compares two methods with regard to their applicability in a transfer learning sense, i.e. training on one tissue type (f…