0000000000140327
AUTHOR
Heiko Grussbach
MULTIFRACTAL ELECTRONIC WAVE FUNCTIONS IN THE ANDERSON MODEL OF LOCALIZATION
Investigations of the multifractal properties of electronic wave functions in disordered samples are reviewed. The characteristic mass exponents of the multifractal measure, the generalized dimensions and the singularity spectra are discussed for typical cases. New results for large 3D systems are reported, suggesting that the multifractal properties at the mobility edge which separates localized and extended states are independent of the microscopic details of the model.
Fluctuations in mesoscopic systems
Abstract Electronic wavefunctions in weakly disordered systems have been studied within the Anderson model of localization. The eigenstates calculated by means of the Lanczos diagonalization algorithm display characteristic spatial fluctuations that can be described by a multifractal analysis. For increasing disorder or energy the observed curdling of the wavefunction reflects the stronger localization, but no exponential decay can be observed. This is reflected in the set of generalized fractal dimensions and the singularity spectrum of the fractal measure.
Dimensionality Dependence of the Metal-Insulator Transition in the Anderson Model of Localization
The metal-insulator transition is investigated by means of the transfer-matrix method to describe the critical behavior close to the lower critical dimension 2. We study several bifractal systems with fractal dimensions between 2 and 3. Together with 3D and 4D results, these data give a coherent description of the dimensionality dependence of the critical disorder and the critical exponent in terms of the spectral dimension of the samples. We also show that the upper critical dimension is probably infinite, certainly larger than 4.
Multifractal wave functions at the Anderson transition.
Electronic wave functions in disordered systems are studied within the Anderson model of localization. At the critical disorder in 3D we diagonalize very large (103 823\ifmmode\times\else\texttimes\fi{}103 823) secular matrices by means of the Lanczos algorithm. On all length scales the obtained strong spatial fluctuations of the amplitude of the eigenstates display a multifractal character, reflected in the set of generalized fractal dimensions and the singularity spectrum of the fractal measure. An analysis of 1D systems shows multifractality too, in contrast to previous claims.
Determination of the mobility edge in the Anderson model of localization in three dimensions by multifractal analysis.
We study the Anderson model of localization in three dimensions with different probability distributions for the site energies. Using the Lanczos algorithm we calculate eigenvectors for different model parameters like disorder and energy. From these we derive the singularity spectrum typically used for the characterization of multifractal objects. We demonstrate that the singularity spectrum at the critical disorder, which determines the mobility edge at the band center, is independent of the employed probability distribution. Assuming that this singularity spectrum is universal for the metal-insulator transition regardless of specific parameters of the model we establish a straightforward …
Spatial multifractal properties of wave packets in the Anderson model of localization.
The multifractal properties of electronic wave functions in disordered samples are investigated. In a given energy range all eigenstates are determined for the same disorder configuration in the Anderson model of localization. It is shown that the singularity spectrum and the generalized dimensions change only slowly with energy, aside from statistical fluctuations. More important, the wave packet constructed by linear combination of the eigenstates shows quantitatively the same multifractal properties. Consequences for the transport properties of electronic states in disordered systems are discussed.
SPATIAL MULTIFRACTALITY OF ELECTRONIC STATES AND THE METAL-INSULATOR TRANSITION IN DISORDERED SYSTEMS
For the investigation of the spatial behavior of electronic wave functions in disordered systems, we employ the Anderson model of localization. The eigenstates of the corresponding Hamiltonian are calculated numerically by means of the Lanczos algorithm and are analyzed with respect to their spatial multifractal properties. We find that the wave functions show spatial multifractality for all parameter cases not too far away from the metal-insulator transition (MIT) which separates localized from extended states in this model. Exactly at the MIT, multifractality is expected to exist on all length scales larger than the lattice spacing. It is found that the corresponding singularity spectrum…
Multifractal electronic wave functions in disordered systems
Abstract To investigate the electronic states in disordered samples we diagonalize very large secular matrices corresponding to the Anderson Hamiltonian. The resulting probability density of single electronic eigenstates in 1-, 2-, and 3-dimensional samples is analysed by means of a box-counting procedure. By linear regression we obtain the Lipschitz-Holder exponents and the corresponding singularity spectrum, typical for a multifractal set in each case. By means of a Legendre transformation the mass exponents and the generalized dimensions are derived. Consequences for spectroscopic intensities and transport properties are discussed.
Electronic States in Mesoscopic Systems
Abstract Electronic states in disordered systems are studied within the Anderson model of localization. By means of the Green's function technique we derive the transmission coefficient for electronic states through mesoscopic samples. The transmission coefficient is shown to be not self-averaging due to strong spatial fluctuations of the amplitude of the eigenstates, which are obtained by direct diagonalization of the respective secular matrices. The wave functions display a multifractal behaviour, characterized by the set of generalized fractal dimensions and the singularity spectrum of the fractal measure.