0000000000140827
AUTHOR
Pietro Perlo
Synthesis and thermoelectric characterisation of bismuth nanoparticles
An effective method of preparation of bismuth nanopowders by thermal decomposition of bismuth dodecyl-mercaptide Bi(SC12H25)3 and preliminary results on their thermoelectric properties are reported. The thermolysis process leads to Bi nanoparticles due to the efficient capping agent effect of the dodecyl-disulfide by-product, which strongly bonds the surface of the Bi clusters, preventing their aggregation and significantly reducing their growth rate. The structure and morphology of the thermolysis products were investigated by differential scanning calorimetry, thermogravimetry, X-ray diffractometry, 1H nuclear magnetic resonance spectroscopy, scanning electron microscopy, and energy dispe…
NMR-investigation of the mechanism of silver mercaptide thermolysis in amorphous polystyrene
Polymer-embedded silver clusters have been prepared by thermal decomposition of silver dodecylmercaptide previously dissolved in amorphous polystyrene. The morphology and structure of silver clusters have been determined by transmission electron microscopy (TEM) and large angle X-ray diffractometry (XRD), respectively. The mechanism involved in the thermolysis reaction was elucidated by different NMR techniques. The thermolysis produced thiol-derivatized silver clusters (i.e., silver clusters coated with a self-organized thiol monolayer, Agx(SC12H25)y) and had the effect of increasing the branching degree of polystyrene due to enhanced cross-linking.