Simulation and control of dissolved air flotation and column froth flotation with simultaneous sedimentation.
Abstract Flotation is a separation process where particles or droplets are removed from a suspension with the aid of floating gas bubbles. Applications include dissolved air flotation (DAF) in industrial wastewater treatment and column froth flotation (CFF) in wastewater treatment and mineral processing. One-dimensional models of flotation have been limited to steady-state situations for half a century by means of the drift-flux theory. A newly developed dynamic one-dimensional model formulated in terms of partial differential equations can be used to predict the process of simultaneous flotation of bubbles and sedimentation of particles that are not attached to bubbles. The governing model…
A degenerating convection-diffusion system modelling froth flotation with drainage
Abstract Froth flotation is a common unit operation used in mineral processing. It serves to separate valuable mineral particles from worthless gangue particles in finely ground ores. The valuable mineral particles are hydrophobic and attach to bubbles of air injected into the pulp. This creates bubble-particle aggregates that rise to the top of the flotation column where they accumulate to a froth or foam layer that is removed through a launder for further processing. At the same time, the hydrophilic gangue particles settle and are removed continuously. The drainage of liquid due to capillarity is essential for the formation of a stable froth layer. This effect is included into a previous…
Flotation with sedimentation: Steady states and numerical simulation of transient operation
Abstract A spatially one-dimensional model of the hydrodynamics of a flotation column is based on one continuous phase, the fluid, and two disperse phases: the aggregates, that is, bubbles with attached hydrophobic valuable particles, and the solid particles that form the gangue. A common feed inlet for slurry mixture and gas is considered and the bubbles are assumed to be fully aggregated with hydrophobic particles as they enter the column. The conservation law of the three phases yields a model expressed as a system of partial differential equations where the nonlinear constitutive flux functions come from the drift-flux and solids-flux theories. In addition, the total flux functions are …