0000000000141393
AUTHOR
E. A. An
Orientational ordering transitions of semiflexible polymers in thin films: A Monte Carlo simulation
Athermal solutions (from dilute to concentrated) of semiflexible macromolecules confined in a film of thickness D between two hard walls are studied by means of grand-canonical lattice Monte Carlo simulation using the bond fluctuation model. This system exhibits two phase transitions as a function of the thickness of the film and polymer volume fraction. One of them is the bulk isotropic-nematic first-order transition, which ends in a critical point on decreasing the film thickness. The chemical potential at this transition decreases with decreasing film thickness ("capillary nematization"). The other transition is a continuous (or very weakly first-order) transition in the layers adjacent …
Equation of State for Macromolecules of Variable Flexibility in Good Solvents: A Comparison of Techniques for Monte Carlo Simulations of Lattice Models
The osmotic equation of state for the athermal bond fluctuation model on the simple cubic lattice is obtained from extensive Monte Carlo simulations. For short macromolecules (chain length N=20) we study the influence of various choices for the chain stiffness on the equation of state. Three techniques are applied and compared in order to critically assess their efficiency and accuracy: the repulsive wall method, the thermodynamic integration method (which rests on the feasibility of simulations in the grand canonical ensemble), and the recently advocated sedimentation equilibrium method, which records the density profile in an external (e.g. gravitation-like) field and infers, via a local …