0000000000141394

AUTHOR

M. R. Stukan

Orientational ordering transitions of semiflexible polymers in thin films: A Monte Carlo simulation

Athermal solutions (from dilute to concentrated) of semiflexible macromolecules confined in a film of thickness D between two hard walls are studied by means of grand-canonical lattice Monte Carlo simulation using the bond fluctuation model. This system exhibits two phase transitions as a function of the thickness of the film and polymer volume fraction. One of them is the bulk isotropic-nematic first-order transition, which ends in a critical point on decreasing the film thickness. The chemical potential at this transition decreases with decreasing film thickness ("capillary nematization"). The other transition is a continuous (or very weakly first-order) transition in the layers adjacent …

research product

Monte Carlo Simulations of Semi-Flexible Polymers

We present Monte Carlo simulations on the phase behavior of semiflexible macromolecules. For a single chain this question is of biophysical interest given the fact that long and stiff DNA chains are typically folded up into very tight compartments. So one can ask the question how the state diagram of a semiflexible chain differs from the coilglobule behavior of a flexible macromolecule. Another effect connected with rigidity of the chains is their tendency to aggregate and form nematically ordered structures. As a consequence one has two competing phase transitions: a gas-liquid and an isotropic-nematic transition potentially giving rise to a complicated phase diagram.

research product

Equation of State for Macromolecules of Variable Flexibility in Good Solvents: A Comparison of Techniques for Monte Carlo Simulations of Lattice Models

The osmotic equation of state for the athermal bond fluctuation model on the simple cubic lattice is obtained from extensive Monte Carlo simulations. For short macromolecules (chain length N=20) we study the influence of various choices for the chain stiffness on the equation of state. Three techniques are applied and compared in order to critically assess their efficiency and accuracy: the repulsive wall method, the thermodynamic integration method (which rests on the feasibility of simulations in the grand canonical ensemble), and the recently advocated sedimentation equilibrium method, which records the density profile in an external (e.g. gravitation-like) field and infers, via a local …

research product

Structures of stiff macromolecules of finite chain length near the coil-globule transition: A Monte Carlo simulation

Using a coarse-grained model of a semiflexible macromolecule, the equilibrium shapes of the chain have been studied varying both the temperature and the chain stiffness. We have applied Monte Carlo techniques using the bond fluctuation model for a chain length of N = 80 effective monomers, and two different types of interactions: a potential depending on the angle between successive bonds along the chain to control the chain stiffness, and an attractive interaction between non-bonded effective monomers to model variable solvent quality. In a diagram of states where chain stiffness and inverse temperature and used as variables, we find regions where the chain exists as coil, as spherical glo…

research product

Chain length dependence of the state diagram of a single stiff-chain macromolecule: Theory and Monte Carlo simulation

We present a Monte Carlo computer simulation and theoretical results for the dependence of the state diagram of a single semiflexible chain on the chain length. The calculated transition lines between different structures in the state diagrams for both studied chain lengths N=40 and N=80 can be described by theoretical predictions which include chain length dependence explicitly. The stability criteria of different structures are discussed. The theoretically predicted exponent in the dependence of the toroid size on the chain length is compatible with computer simulation results.

research product

Conformational Properties of Semiflexible Chains at Nematic Ordering Transitions in Thin Films: A Monte Carlo Simulation

Athermal solutions of semiflexible macromolecules with excluded volume interactions and with varying concentration (dilute, semidilute, and concentrated solutions) in a film of thickness D between ...

research product