0000000000141492
AUTHOR
Roberta Faraone
A Predictive System to Classify Preoperative Grading of Rectal Cancer Using Radiomics Features
Although preoperative biopsy of rectal cancer (RC) is an essential step for confirmation of diagnosis, it currently fails to provide prognostic information to the clinician beyond a rough estimation of tumour grade. In this study we used a risk classification to stratified patient in low-risk and high-risk patients in relation to the disease free survival and the overall survival using histopathological post-operative features. The purpose of this study was to evaluate if low-risk and high-risk RC can be distinguished using a CT-based radiomics model. We retrospectively reviewed the preoperative abdominal contrast-enhanced CT of 40 patients with RC. CT portal-venous phase was used for manua…
Whole-body MRI radiomics model to predict relapsed/refractory Hodgkin Lymphoma: A preliminary study.
Purpose A strong prognostic score that enables a stratification of newly diagnosed Hodgkin Lymphoma (HL) to identify patients at high risk of refractory/relapsed disease is still needed. Our aim was to investigate the potential value of a radiomics analysis pipeline from whole-body MRI (WB-MRI) exams for clinical outcome prediction in patients with Hodgkin Lymphoma (HL). Materials and methods Index lesions from baseline WB-MRIs of 40 patients (22 females; mean age 31.7 ± 11.4 years) with newly diagnosed HL treated by ABVD chemotherapy regimen were manually segmented on T1-weighted, STIR, and DWI images for texture analysis feature extraction. A machine learning approach based on the Extra T…