0000000000141893

AUTHOR

Pradeep Kachroo

Free Radicals Mediate Systemic Acquired Resistance

Summary: Systemic acquired resistance (SAR) is a form of resistance that protects plants against a broad spectrum of secondary infections. However, exploiting SAR for the protection of agriculturally important plants warrants a thorough investigation of the mutual interrelationships among the various signals that mediate SAR. Here, we show that nitric oxide (NO) and reactive oxygen species (ROS) serve as inducers of SAR in a concentration-dependent manner. Thus, genetic mutations that either inhibit NO/ROS production or increase NO accumulation (e.g., a mutation in S-nitrosoglutathione reductase [GSNOR]) abrogate SAR. Different ROS function additively to generate the fatty-acid-derived azel…

research product

Free radical-mediated systemic immunity in plants.

SPE IPM; Systemic acquired resistance (SAR) is a form of defense that protects plants against a broad-spectrum of secondary infections by related or unrelated pathogens. SAR related research has witnessed considerable progress in recent years and a number of chemical signals and proteins contributing to SAR have been identified. All of these diverse constituents share their requirement for the phytohormone salicylic acid, an essential downstream component of the SAR pathway. However, recent work demonstrating the essential parallel functioning of nitric oxide (NO)-derived and reactive oxygen species (ROS)-derived signaling together with SA provides important new insights in the overlapping …

research product