0000000000141913

AUTHOR

Oleg N. Demidov

showing 12 related works from this author

Wip1 inhibition leads to severe pro-inflammatory phenotype in skin in response to chemical irritation

2016

Mice Knockout0301 basic medicinebusiness.industryDermatologyBiologyDermatitis Contactmedicine.disease_causeBiochemistryPhenotypeMice Inbred C57BLProtein Phosphatase 2C03 medical and health sciences030104 developmental biology0302 clinical medicineText mining030220 oncology & carcinogenesisImmunologymedicineAnimalsTetradecanoylphorbol AcetateIrritationbusinessMolecular BiologySkinJournal of Dermatological Science
researchProduct

Nuclear protein phosphatase Wip1 regulate sensitivity of human colorectal cancer cells to DNA damaging anti-cancer agents

2019

chemistry.chemical_compoundchemistryColorectal cancerbusiness.industryPhosphatasemedicineCancer researchCancerNuclear proteinmedicine.diseasebusinessGeneral Biochemistry Genetics and Molecular BiologyDNABiopolymers and Cell
researchProduct

The involvement of DNA damage response pathway in nuclear reorganization during netotic initiation

2019

ChemistryDNA damageGeneral Biochemistry Genetics and Molecular BiologyCell biologyBiopolymers and Cell
researchProduct

The cell nucleus. A study in Burgundy

2019

ABSTRACT Wilhelm Bernhard’s revolutionary microscopy techniques helped him put forward the hypothesis of specialized compartmentalization of the nucleus. He also described for the first time the nuclear bodies and peri-chromatin fibrils, and demonstrated that these granules contain an RNA component. The tradition of biennial workshops, named after this great scientist, continues, and this year it took place in the heart of Burgundy, in Dijon, France (May 20–24, 2019, organized by INSERM UMR1231, UBFC), where well-fed participants emphasized the importance of viewing the cell nucleus as a hub of specialized colloidal compartments that orchestrate replication, transcription and nuclear transp…

lcsh:QH426-470media_common.quotation_subjectPhase separationArt history03 medical and health sciencesNeoplasmsmedicineAnimalsHumanslcsh:QH573-671nucleolusNuclear pore030304 developmental biologymedia_commonCell Nucleus0303 health scienceslcsh:Cytologynuclear pores030302 biochemistry & molecular biologyCell BiologyArtWilhelm Bernhard Workshop 2019lcsh:GeneticsMicroscopy ElectronCell nucleusmedicine.anatomical_structurelaminsRNANuclear transportNucleusLaminNucleus
researchProduct

Novel isatin-derived molecules activate p53 via interference with Mdm2 to promote apoptosis

2018

International audience; The p53 protein is a key tumor suppressor in mammals. In response to various forms of genotoxic stress p53 stimulates expression of genes whose products induce cell cycle arrest and/or apoptosis. An E3-ubiquitin ligase, Mdm2 (mouse-double-minute 2) and its human ortholog Hdm2, physically interact with the amino-terminus of p53 to mediate its ubiquitin-mediated degradation via the proteasome. Thus, pharmacological inhibition of the p53-Mdm2 interaction leads to overall stabilization of p53 and stimulation of its anti-tumorigenic activity. In this study we characterize the biological effects of a novel class of non-genotoxic isatin Schiff and Mannich base derivatives (…

Isatin0301 basic medicineProgrammed cell deathCell cycle checkpointAntineoplastic AgentsApoptosis[SDV.BC]Life Sciences [q-bio]/Cellular BiologyBiologyPiperazinesHistonesMice03 medical and health scienceschemistry.chemical_compound0302 clinical medicineNutlinCell Line TumorProto-Oncogene ProteinsAnimalsHumansMolecular Biologychemistry.chemical_classificationDNA ligaseIsatinImidazolesISMBDsProto-Oncogene Proteins c-mdm2Cell BiologyNutlinp53-activating moleculesCell biology030104 developmental biologychemistryProteasomeApoptosis030220 oncology & carcinogenesisbiology.proteinMdm2PumaTumor Suppressor Protein p53Apoptosis Regulatory Proteinsautomated microscopy system OperettaResearch PaperDevelopmental BiologyCell Cycle
researchProduct

Role of Gadd45a in Wip1-dependent regulation of intestinal tumorigenesis.

2012

Conversion of intestinal stem cells into tumor-initiating cells is an early step in Apc(Min)-induced polyposis. Wild-type p53-induced phosphatase 1 (Wip1)-dependent activation of a DNA damage response and p53 has a permanent role in suppression of stem cell conversion, and deletion of Wip1 lowers the tumor burden in Apc(Min) mice. Here we show that cyclin-dependent kinase inhibitor 2a, checkpoint kinase 2, and growth arrest and DNA damage gene 45a (Gadd45a) exert critical functions in the tumor-resistant phenotype of Wip1-deficient mice. We further identified Gadd45a as a haploinsufficient gene in the regulation of Wip1-dependent tumor resistance in mice. Gadd45a appears to function through…

Genes APCDNA RepairDNA repairDNA damageApoptosisCell Cycle ProteinsBiologyProtein Serine-Threonine KinasesReceptors G-Protein-CoupledMicePhosphoprotein PhosphatasesGene silencingAnimalsMolecular BiologyCheckpoint Kinase 2Cyclin-Dependent Kinase Inhibitor p16beta CateninMice KnockoutOriginal PaperKinaseIntestinal PolyposisStem CellsJNK Mitogen-Activated Protein KinasesNuclear ProteinsCell BiologyCell biologyProtein Phosphatase 2CCheckpoint Kinase 2Cell Transformation NeoplasticCancer researchSignal transductionStem cellTumor Suppressor Protein p53GADD45ASignal TransductionCell death and differentiation
researchProduct

HSP110 promotes colorectal cancer growth through STAT3 activation.

2017

IF 7.932; International audience; Heat shock protein 110 (HSP110) is induced by different stresses and, through its anti-apoptotic and chaperoning properties, helps cells survive these adverse situations. In colon cancers, HSP110 is abnormally abundant. We have recently shown that colorectal cancer patients with microsatellite instability (MSI) had an improved response to chemotherapy because they harbor an HSP110-inactivating mutation (HSP110DE9). In this work, we used patient biopsies, human colorectal cancer cells grown in vitro and in vivo (xenografts), and intestinal crypts to demonstrate that HSP110 is also involved in colon cancer growth. We showed that HSP110 induces colon cancer ce…

STAT3 Transcription Factor0301 basic medicineCancer ResearchColorectal cancerBiopsyMice Nudecolorectal cancer[SDV.CAN]Life Sciences [q-bio]/CancerMouse model of colorectal and intestinal cancerBiologymedicine.disease_causeMolecular oncology[ SDV.CAN ] Life Sciences [q-bio]/CancerSTAT3Mice03 medical and health sciences0302 clinical medicineGrowth factor receptorCell Line TumorGeneticsmedicineAnimalsHumansHSP110 Heat-Shock ProteinsIntestinal MucosaPhosphorylationSTAT3Molecular BiologyCell ProliferationMicrosatellite instabilityCell cyclemedicine.diseaseMolecular biologydigestive system diseases3. Good health030104 developmental biology030220 oncology & carcinogenesisCancer researchbiology.proteinFemaleColorectal NeoplasmsCarcinogenesisNeoplasm TransplantationHSP110Protein Binding
researchProduct

Endoplasmic Reticulum Chaperones in Viral Infection: Therapeutic Perspectives

2021

SUMMARY Viruses are intracellular parasites that subvert the functions of their host cells to accomplish their infection cycle. The endoplasmic reticulum (ER)-residing chaperone proteins are central for the achievement of different steps of the viral cycle, from entry and replication to assembly and exit. The most abundant ER chaperones are GRP78 (78-kDa glucose-regulated protein), GRP94 (94-kDa glucose-regulated protein), the carbohydrate or lectin-like chaperones calnexin (CNX) and calreticulin (CRT), the protein disulfide isomerases (PDIs), and the DNAJ chaperones. This review will focus on the pleiotropic roles of ER chaperones during viral infection. We will cover their essential role …

GRP78CalnexinReviewGRP94Endoplasmic ReticulumMicrobiologyDNAJcalreticulinImmune systemCalnexinHumansProtein disulfide-isomeraseMolecular BiologyEndoplasmic Reticulum Chaperone BiPchemistry.chemical_classificationbiologyEndoplasmic reticulumIntracellular parasiteprotein disulfide isomeraseCell biologyER chaperoneInfectious DiseaseschemistryApoptosisVirus Diseasesbiology.proteinviral infectionGlycoproteinCalreticulinMolecular ChaperonesMicrobiology and Molecular Biology Reviews : MMBR
researchProduct

The HSP90 inhibitor, 17AAG, protects the intestinal stem cell niche and inhibits graft versus host disease development.

2016

IF 7.932; International audience; Graft versus host disease (GvHD), which is the primary complication of allogeneic bone marrow transplantation, can alter the intestinal barrier targeted by activated donor T-cells. Chemical inhibition of the stress protein HSP90 was demonstrated in vitro to inhibit T-cell activation and to modulate endoplasmic reticulum (ER) stress to which intestinal cells are highly susceptible. Since the HSP90 inhibitor 17-allylamino-demethoxygeldanamycin (17AAG) is developed in clinics, we explored here its ability to control intestinal acute GvHD in vivo in two mouse GvHD models (C57BL/6 -> BALB/c and FVB/N -> Lgr5-eGFP), ex vivo in intestine organoids and in vitro in …

0301 basic medicineX-Box Binding Protein 1Cancer ResearchLactams MacrocyclicRNA SplicingT-CellsGraft vs Host Disease[SDV.CAN]Life Sciences [q-bio]/Cancer[SDV.BC]Life Sciences [q-bio]/Cellular BiologyBiology[ SDV.CAN ] Life Sciences [q-bio]/CancerHsp90 inhibitor03 medical and health sciencesMiceSensitivityInflammatory-Bowel-diseaseGeneticsmedicineBenzoquinonesAnimals[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular BiologyNeural progenitor cellsHSP90 Heat-Shock ProteinsIntestinal MucosaStem Cell Niche[ SDV.GEN.GH ] Life Sciences [q-bio]/Genetics/Human genetics[ SDV.BBM ] Life Sciences [q-bio]/Biochemistry Molecular BiologyMolecular BiologyLeukemia[ SDV.BC ] Life Sciences [q-bio]/Cellular BiologyBone-Marrow-TransplantationMoleculesmedicine.diseaseStem cell niche3. Good healthIre1-AlphaIntestinesMice Inbred C57BL030104 developmental biologyGraft-versus-host diseaseEr Stress[SDV.GEN.GH]Life Sciences [q-bio]/Genetics/Human geneticsCytoprotectionImmunologyMultiple-MyelomaFemaleOncogene
researchProduct

Wip1 phosphatase: between p53 and MAPK kinases pathways.

2016

IF 5.008; International audience; Cells undergoing oncogenic transformation frequently inactivate tumor suppressor pathways that could prevent their uncontrolled growth. Among those pathways p53 and p38MAPK pathways play a critical role in regulation of cell cycle, senescence and cell death in response to activation of oncogenes, stress and DNA damage. Consequently, these two pathways are important in determining the sensitivity of tumor cells to anti-cancer treatment. Wild type p53-induced phosphatase, Wip1, is involved in governance of both pathways. Recently, strategies directed to manipulation with Wip1 activity proposed to advance current day anticancer treatment and novel chemical com…

0301 basic medicinep53Programmed cell deathDNA damagetumor suppressorPhosphatase[SDV.CAN]Life Sciences [q-bio]/Cancer[SDV.BC]Life Sciences [q-bio]/Cellular BiologyReviewPyruvate dehydrogenase phosphataseBiologyBioinformaticsmedicine.disease_causechemotherapyp38 Mitogen-Activated Protein Kinases[ SDV.CAN ] Life Sciences [q-bio]/Cancerphosphatase03 medical and health sciencesmedicineAnimalsHumansGenetically modified animal[ SDV.BC ] Life Sciences [q-bio]/Cellular BiologyCell CycleCell cycleCell biologyProtein Phosphatase 2C030104 developmental biologyCell Transformation NeoplasticOncologyMutationSignal transductionTumor Suppressor Protein p53CarcinogenesisDNA DamageSignal TransductionOncotarget
researchProduct

Wee1 inhibition potentiates Wip1-dependent p53-negative tumor cell death during chemotherapy

2016

AbstractInactivation of p53 found in more than half of human cancers is often associated with increased tumor resistance to anti-cancer therapy. We have previously shown that overexpression of the phosphatase Wip1 in p53-negative tumors sensitizes them to chemotherapeutic agents, while protecting normal tissues from the side effects of anti-cancer treatment. In this study, we decided to search for kinases that prevent Wip1-mediated sensitization of cancer cells, thereby interfering with efficacy of genotoxic anti-cancer drugs. To this end, we performed a flow cytometry-based screening in order to identify kinases that regulated the levels of γH2AX, which were used as readout. Another criter…

Wip1ApoptosisCell Cycle ProteinsPharmacologyMESH: G2 Phase Cell Cycle CheckpointsHistonesMESH : PhosphorylationMiceMESH : Cell Cycle ProteinsMESH: AnimalsMESH: Tumor Suppressor Protein p53MESH: HistonesKinaseTp53 mutationsMESH : Mice Transgenic3. Good healthProtein Phosphatase 2CSurvival RateMESH : Antineoplastic AgentsH2ax phosphorylationP53 activationMESH: Protein Phosphatase 2CRNA InterferenceMESH : Colorectal NeoplasmsMESH : Carrier ProteinsHistone H2axMESH: MitochondriaImmunologyHuman fibroblastsMESH: Carrier ProteinsAntineoplastic AgentsMESH: Protein-Tyrosine KinasesMESH: Protein-Serine-Threonine KinasesMESH : Cisplatin03 medical and health sciencesMESH: Cell Cycle ProteinsGenotoxic stressMESH : Protein-Tyrosine KinasesHumansMESH : HistonesAnticancer TherapyMESH: DNA DamageCisplatinMESH: HumansMESH: Phosphorylation[ SDV.BC ] Life Sciences [q-bio]/Cellular BiologyMESH : HumansMESH : Nuclear Proteins030104 developmental biologyCancer cellMESH: Antineoplastic AgentsCisplatinCarrier ProteinsMESH: Nuclear ProteinsMESH : ApoptosisDna-damage response0301 basic medicineCancer ResearchMESH: Caspase 3MESH : Caspase 3PhosphorylationCytotoxicityMESH : DNA DamageSensitizationmedicine.diagnostic_testCaspase 3Nuclear ProteinsProtein-Tyrosine KinasesMESH : Survival RateMitochondriaG2 Phase Cell Cycle CheckpointsWee1medicine.anatomical_structureMESH : Protein Phosphatase 2COriginal ArticleMESH : MitochondriaColorectal Neoplasmsmedicine.drugMESH : Protein-Serine-Threonine KinasesMESH: Cell Line TumorMESH: Survival RateMESH: Mice TransgenicMESH: RNA InterferencePhosphataseMice Transgenic[SDV.BC]Life Sciences [q-bio]/Cellular BiologyBiologyProtein Serine-Threonine KinasesFlow cytometryCellular and Molecular NeuroscienceCell Line TumorMESH : MicemedicineAnimalsMESH: MiceMESH : Cell Line TumorMESH: ApoptosisCell BiologyMESH : Tumor Suppressor Protein p53MESH: CisplatinCancer researchbiology.proteinMESH : AnimalsMESH : G2 Phase Cell Cycle CheckpointsMESH : RNA InterferenceTumor Suppressor Protein p53MESH: Colorectal NeoplasmsDNA DamageCell Death & Disease
researchProduct

Inhibition of HSP70: a challenging anti-cancer strategy.

2012

HSP70 is a chaperone that accumulates in the cells after many different stresses promoting cell survival in response to the adverse conditions. In contrast to normal cells, most cancer cells abundantly express HSP70 at the basal level to resist to various insults at different stages of tumorigenesis and during anti-cancer treatment. This cancer cells addiction for HSP70 is the rational for its targeting in cancer therapy. Much effort has been dedicated in the last years for the active search of HSP70 inhibitors. Additionally, the recent clinical trials on highly promising inhibitors of another stress protein, HSP90, showed compensatory increase in HSP70 levels and raised the question of nec…

Cancer ResearchAntineoplastic AgentsApoptosismedicine.disease_cause03 medical and health sciences0302 clinical medicineImmune systemStress PhysiologicalHeat shock proteinNeoplasmsmedicineAutophagyAnimalsHumansHSP70 Heat-Shock ProteinsHSP90 Heat-Shock ProteinsMolecular Targeted Therapy030304 developmental biology0303 health sciencesbiologyHsp903. Good healthNeoplasm ProteinsProtein Structure TertiaryClinical trialOncologyApoptosisDrug Resistance Neoplasm030220 oncology & carcinogenesisChaperone (protein)Drug DesignCancer cellImmunologybiology.proteinCancer researchDrug Screening Assays AntitumorCarcinogenesisMolecular ChaperonesCancer letters
researchProduct