0000000000141914
AUTHOR
Anastasia R. Goloudina
Wip1 inhibition leads to severe pro-inflammatory phenotype in skin in response to chemical irritation
Role of Gadd45a in Wip1-dependent regulation of intestinal tumorigenesis.
Conversion of intestinal stem cells into tumor-initiating cells is an early step in Apc(Min)-induced polyposis. Wild-type p53-induced phosphatase 1 (Wip1)-dependent activation of a DNA damage response and p53 has a permanent role in suppression of stem cell conversion, and deletion of Wip1 lowers the tumor burden in Apc(Min) mice. Here we show that cyclin-dependent kinase inhibitor 2a, checkpoint kinase 2, and growth arrest and DNA damage gene 45a (Gadd45a) exert critical functions in the tumor-resistant phenotype of Wip1-deficient mice. We further identified Gadd45a as a haploinsufficient gene in the regulation of Wip1-dependent tumor resistance in mice. Gadd45a appears to function through…
HSP110 promotes colorectal cancer growth through STAT3 activation.
IF 7.932; International audience; Heat shock protein 110 (HSP110) is induced by different stresses and, through its anti-apoptotic and chaperoning properties, helps cells survive these adverse situations. In colon cancers, HSP110 is abnormally abundant. We have recently shown that colorectal cancer patients with microsatellite instability (MSI) had an improved response to chemotherapy because they harbor an HSP110-inactivating mutation (HSP110DE9). In this work, we used patient biopsies, human colorectal cancer cells grown in vitro and in vivo (xenografts), and intestinal crypts to demonstrate that HSP110 is also involved in colon cancer growth. We showed that HSP110 induces colon cancer ce…
The HSP90 inhibitor, 17AAG, protects the intestinal stem cell niche and inhibits graft versus host disease development.
IF 7.932; International audience; Graft versus host disease (GvHD), which is the primary complication of allogeneic bone marrow transplantation, can alter the intestinal barrier targeted by activated donor T-cells. Chemical inhibition of the stress protein HSP90 was demonstrated in vitro to inhibit T-cell activation and to modulate endoplasmic reticulum (ER) stress to which intestinal cells are highly susceptible. Since the HSP90 inhibitor 17-allylamino-demethoxygeldanamycin (17AAG) is developed in clinics, we explored here its ability to control intestinal acute GvHD in vivo in two mouse GvHD models (C57BL/6 -> BALB/c and FVB/N -> Lgr5-eGFP), ex vivo in intestine organoids and in vitro in …
Wip1 phosphatase: between p53 and MAPK kinases pathways.
IF 5.008; International audience; Cells undergoing oncogenic transformation frequently inactivate tumor suppressor pathways that could prevent their uncontrolled growth. Among those pathways p53 and p38MAPK pathways play a critical role in regulation of cell cycle, senescence and cell death in response to activation of oncogenes, stress and DNA damage. Consequently, these two pathways are important in determining the sensitivity of tumor cells to anti-cancer treatment. Wild type p53-induced phosphatase, Wip1, is involved in governance of both pathways. Recently, strategies directed to manipulation with Wip1 activity proposed to advance current day anticancer treatment and novel chemical com…
Wee1 inhibition potentiates Wip1-dependent p53-negative tumor cell death during chemotherapy
AbstractInactivation of p53 found in more than half of human cancers is often associated with increased tumor resistance to anti-cancer therapy. We have previously shown that overexpression of the phosphatase Wip1 in p53-negative tumors sensitizes them to chemotherapeutic agents, while protecting normal tissues from the side effects of anti-cancer treatment. In this study, we decided to search for kinases that prevent Wip1-mediated sensitization of cancer cells, thereby interfering with efficacy of genotoxic anti-cancer drugs. To this end, we performed a flow cytometry-based screening in order to identify kinases that regulated the levels of γH2AX, which were used as readout. Another criter…
Inhibition of HSP70: a challenging anti-cancer strategy.
HSP70 is a chaperone that accumulates in the cells after many different stresses promoting cell survival in response to the adverse conditions. In contrast to normal cells, most cancer cells abundantly express HSP70 at the basal level to resist to various insults at different stages of tumorigenesis and during anti-cancer treatment. This cancer cells addiction for HSP70 is the rational for its targeting in cancer therapy. Much effort has been dedicated in the last years for the active search of HSP70 inhibitors. Additionally, the recent clinical trials on highly promising inhibitors of another stress protein, HSP90, showed compensatory increase in HSP70 levels and raised the question of nec…