0000000000141947

AUTHOR

Philipp Welschof

The sodium-glucose co-transporter 2 inhibitor empagliflozin improves diabetes-induced vascular dysfunction in the streptozotocin diabetes rat model by interfering with oxidative stress and glucotoxicity.

Objective In diabetes, vascular dysfunction is characterized by impaired endothelial function due to increased oxidative stress. Empagliflozin, as a selective sodium-glucose co-transporter 2 inhibitor (SGLT2i), offers a novel approach for the treatment of type 2 diabetes by enhancing urinary glucose excretion. The aim of the present study was to test whether treatment with empagliflozin improves endothelial dysfunction in type I diabetic rats via reduction of glucotoxicity and associated vascular oxidative stress. Methods Type I diabetes in Wistar rats was induced by an intravenous injection of streptozotocin (60 mg/kg). One week after injection empagliflozin (10 and 30 mg/kg/d) was adminis…

research product

Comparison of DPP‐4 inhibition versus GLP‐1 analogue supplementation on survival and vascular complications in experimental sepsis (145.2)

Background: Dipeptidyl peptidase [DPP]-4 inhibitors are a new class of drug for the treatment of hyperglycemia and recent studies revealed anti-inflammatory effects of these gliptins in experimenta...

research product

The SGLT2 inhibitor empagliflozin improves the primary diabetic complications in ZDF rats

Hyperglycemia associated with inflammation and oxidative stress is a major cause of vascular dysfunction and cardiovascular disease in diabetes. Recent data reports that a selective sodium-glucose co-transporter 2 inhibitor (SGLT2i), empagliflozin (Jardiance®), ameliorates glucotoxicity via excretion of excess glucose in urine (glucosuria) and significantly improves cardiovascular mortality in type 2 diabetes mellitus (T2DM). The overarching hypothesis is that hyperglycemia and glucotoxicity are upstream of all other complications seen in diabetes. The aim of this study was to investigate effects of empagliflozin on glucotoxicity, β-cell function, inflammation, oxidative stress and endothel…

research product

Effect of soluble guanylyl cyclase activator and stimulator therapy on nitroglycerin-induced nitrate tolerance in rats

Chronic nitroglycerin (GTN) anti-ischemic therapy induces side effects such as nitrate tolerance and endothelial dysfunction. Both phenomena could be based on a desensitization/oxidation of the soluble guanylyl cyclase (sGC). Therefore, the present study aims at investigating the effects of the therapy with the sGC activator BAY 60-2770 and the sGC stimulator BAY 41-8543 on side effects induced by chronic nitroglycerin treatment. Male Wistar rats were treated with nitroglycerin (100mg/kg/d for 3.5days, s.c. in ethanol) and BAY 60-2770 (0.5 or 2.5mg/kg/d) or BAY 41-8543 (1 and 5mg/kg/d) for 6days. Therapy with BAY 60-2770 but not with BAY 41-8543 improved nitroglycerin-triggered endothelial …

research product

Abstract 412: The Sodium-Glucose Cotransporter 2 Inhibitor Empagliflozin Improves Diabetic Complications in the Streptozotocin Type 1 Diabetes Mellitus Model by Interfering With Glucotoxicity and Rescue of Beta-Cell Function

Objectives: In diabetes, cardiovascular complications are associated with endothelial dysfunction and oxidative stress. Empagliflozin (Empa), as a selective sodium-glucose co-transporter 2 inhibitor (SGLT2i) in clinical development, offers a promising novel approach for the treatment of type 2 diabetes by enhancing urinary glucose excretion. The aim of the present study was to test whether treatment with Empa could improve endothelial dysfunction in type I diabetic rats via reduction of glucotoxicity and associated oxidative stress. Research Design and Methods: Type I diabetes in Wistar rats was induced by an intravenous injection of streptozotocin (60 mg/kg). One week after injection Empa…

research product