Discovering single classes in remote sensing images with active learning
When dealing with supervised target detection, the acquisition of labeled samples is one of the most critical phases: the samples must be yet representative of the class of interest, but must also be found among a vast majority of non-target examples. Moreover, the efficiency of the search is also an issue, since the samples labeled as background are not used by target detectors such as the support vector data description (SVDD). In this work we propose a competitive and effective approach to identify the most relevant training samples for one-class classification based on the use of an active learning strategy. The SVDD classifier is first trained with insufficient target examples. It is t…