0000000000142001

AUTHOR

Pascal Chambon

0000-0002-9040-3051

showing 4 related works from this author

Haploinsufficiency of the Primary Familial Brain Calcification Gene SLC20A2 Mediated by Disruption of a Regulatory Element

2020

OBJECTIVE Primary familial brain calcification (PFBC) is a rare cerebral microvascular calcifying disorder with diverse neuropsychiatric expression. Five genes were reported as PFBC causative when carrying pathogenic variants. Haploinsufficiency of SLC20A2, which encodes an inorganic phosphate importer, is a major cause of autosomal-dominant PFBC. However, PFBC remains genetically unexplained in a proportion of patients, suggesting the existence of additional genes or cryptic mutations. We analyzed exome sequencing data of 71 unrelated, genetically unexplained PFBC patients with the aim to detect copy number variations that may disrupt the expression of core PFBC-causing genes. METHODS Afte…

0301 basic medicineBrain DiseasesDNA Copy Number VariationsSodium-Phosphate Cotransporter Proteins Type IIIHEK 293 cellsBrainHaploinsufficiencyBiologyMolecular biologyReverse transcriptase03 medical and health sciencesHEK293 Cells030104 developmental biology0302 clinical medicineNeurologyMutationHumansNeurology (clinical)Copy-number variationAlleleHaploinsufficiencyEnhancerGene030217 neurology & neurosurgeryExome sequencingMovement Disorders
researchProduct

Xq28 duplication includingMECP2in six unreported affected females: what can we learn for diagnosis and genetic counselling?

2017

Duplication of the Xq28 region, involving MECP2 (dupMECP2), has been primarily described in males with severe developmental delay, spasticity, epilepsy, stereotyped movements and recurrent infections. Carrier mothers are usually asymptomatic with an extremely skewed X chromosome inactivation (XCI) pattern. We report a series of six novel symptomatic females carrying a de novo interstitial dupMECP2, and review the 14 symptomatic females reported to date, with the aim to further delineate their phenotype and give clues for genetic counselling. One patient was adopted and among the other 19 patients, seven (37%) had inherited their duplication from their mother, including three mildly (XCI: 70…

0301 basic medicineGeneticsPediatricsmedicine.medical_specialtyGenetic counselingMECP2 duplication syndrome030105 genetics & heredityBiologymedicine.diseaseX-inactivation3. Good healthXq2803 medical and health sciencesEpilepsy0302 clinical medicineGene duplicationGeneticsmedicineAsymptomatic carrierSkewed X-inactivation030217 neurology & neurosurgeryGenetics (clinical)Clinical Genetics
researchProduct

A de novo microdeletion of SEMA5A in a boy with autism spectrum disorder and intellectual disability.

2016

AbstractSemaphorins are a large family of secreted and membrane-associated proteins necessary for wiring of the brain. Semaphorin 5A (SEMA5A) acts as a bifunctional guidance cue, exerting both attractive and inhibitory effects on developing axons. Previous studies have suggested that SEMA5A could be a susceptibility gene for autism spectrum disorders (ASDs). We first identified a de novo translocation t(5;22)(p15.3;q11.21) in a patient with ASD and intellectual disability (ID). At the translocation breakpoint on chromosome 5, we observed a 861-kb deletion encompassing the end of the SEMA5A gene. We delineated the breakpoint by NGS and observed that no gene was disrupted on chromosome 22. We…

Male0301 basic medicinemedicine.medical_specialtyAutism Spectrum DisorderChromosomes Human Pair 22Translocation BreakpointNerve Tissue ProteinsSemaphorinsBiology[SDV.GEN.GH] Life Sciences [q-bio]/Genetics/Human geneticsBioinformaticsArticleTranslocation GeneticautismeChromosome Breakpoints03 medical and health sciencesSemaphorin[ SDV.MHEP ] Life Sciences [q-bio]/Human health and pathologyIntellectual Disabilitymental disordersIntellectual disabilityGeneticsmedicineHumans[ SDV.GEN.GH ] Life Sciences [q-bio]/Genetics/Human geneticsChildGenetics (clinical)Genetics[SDV.MHEP] Life Sciences [q-bio]/Human health and pathologyNeurosciencesMembrane Proteinsmedicine.disease030104 developmental biology[SDV.GEN.GH]Life Sciences [q-bio]/Genetics/Human geneticsAutism spectrum disorderNeurons and CognitionPaternal InheritancecerveauChromosomes Human Pair 5AutismMedical geneticsChromosome DeletionmicrodélétionhumainChromosome 22[SDV.MHEP]Life Sciences [q-bio]/Human health and pathologyGenetic screen
researchProduct

Molecular characterization of 39 de novo sSMC: contribution to prognosis and genetic counselling, a prospective study.

2012

Small supernumerary marker chromosomes (sSMCs) are structurally abnormal chromosomes that cannot be characterized by karyotype. In many prenatal cases of de novo sSMC, the outcome of pregnancy is difficult to predict because the euchromatin content is unclear. This study aimed to determine the presence or absence of euchromatin material of 39 de novo prenatally ascertained sSMC by array-comparative genomic hybridization (array-CGH) or single nucleotide polymorphism (SNP) array. Cases were prospectively ascertained from the study of 65,000 prenatal samples [0.060%; 95% confidence interval (CI), 0.042-0.082]. Array-CGH showed that 22 markers were derived from non-acrocentric markers (56.4%) a…

AdultGenetic MarkersRiskEuchromatinKaryotypeContext (language use)Prenatal diagnosisSingle-nucleotide polymorphismGenetic CounselingBiologyPolymorphism Single NucleotideYoung AdultPregnancyPrenatal DiagnosisGeneticsmedicineSNPHumansGenetic Predisposition to DiseaseProspective StudiesGenetics (clinical)Genetic Association StudiesIn Situ Hybridization FluorescenceGeneticsChromosome AberrationsComparative Genomic Hybridizationmedicine.diagnostic_testKaryotypeMiddle AgedPrognosisMolecular biologyFemaleFranceSwitzerlandSNP arrayFluorescence in situ hybridizationGenome-Wide Association StudyClinical genetics
researchProduct