0000000000142014
AUTHOR
Elena Moltchanova
Bayesian modeling of the evolution of male height in 18th century Finland from incomplete data.
Abstract Data on army recruits’ height are frequently available and can be used to analyze the economics and welfare of the population in different periods of history. However, such data are not a random sample from the whole population at the time of interest, but instead is skewed since the short men were less likely to be recruited. In statistical terms this means that the data are left-truncated. Although truncation is well-understood in statistics a further complication is that the truncation threshold is not known, may vary from time to time, and auxiliary information on the threshold is not at our disposal. The advantage of the fully Bayesian approach presented here is that both the …
A hierarchical Bayesian birth cohort analysis from incomplete registry data: evaluating the trends in the age of onset of insulin-dependent diabetes mellitus (T1DM).
Childhood diabetes is one of the major non-communicable diseases in children under 15 years of age. It requires a life-long insulin treatment and may lead to serious complications. Along with the worldwide increase in the incidence several countries have recently reported a decreasing trend in the age of onset of the disease. The aim of this study is to analyse long-term data on the incidence of the childhood diabetes in Finland from the birth cohorts perspective. The annual incidence data were available for the period 1965--1996 which translates into 1951--1996 birth cohorts. Hence the data consist of completely and partially observed cohorts. Bayesian modelling was employed in the analysi…