0000000000142204
AUTHOR
Teresa De Sanctis
Co-registering kinematics and evoked related potentials during visually guided reach-to-grasp movements.
Background:In non-human primates grasp-related sensorimotor transformations are accomplished in a circuit involving the anterior intraparietal sulcus (area AIP) and both the ventral and the dorsal sectors of the premotor cortex (vPMC and dPMC, respectively). Although a human homologue of such a circuit has been identified, the time course of activation of these cortical areas and how such activity relates to specific kinematic events has yet to be investigated.Methodology/Principal Findings:We combined kinematic and event-related potential techniques to explicitly test how activity within human grasping-related brain areas is modulated in time. Subjects were requested to reach towards and g…
An investigation of the neural circuits underlying reaching and reach-to-grasp movements: from planning to execution
Experimental evidence suggests the existence of a sophisticated brain circuit specifically dedicated to reach-to-grasp planning and execution, both in human and non-human primates (Castiello, 2005). Studies accomplished by means of neuroimaging techniques suggest the hypothesis of a dichotomy between a "reach-to-grasp" circuit, involving the anterior intraparietal area, the dorsal and ventral premotor cortices (PMd and PMv - Castiello and Begliomini, 2008; Filimon, 2010) and a "reaching" circuit involving the medial intraparietal area and the superior parieto-occipital cortex (Culham et al., 2006). However, the time course characterizing the involvement of these regions during the planning …
Object size modulates fronto-parietal activity during reaching movements
In both monkeys and humans, reaching-related sensorimotor transformations involve the activation of a wide fronto-parietal network. Recent neurophysiological evidence suggests that some components of this network host not only neurons encoding the direction of arm reaching movements, but also neurons whose involvement is modulated by the intrinsic features of an object (e.g. size and shape). To date, it has yet to be investigated whether a similar modulation is evident in the human reaching-related areas. To fill this gap, we asked participants to reach towards either a small or a large object while kinematic and electroencephalographic signals were recorded. Behavioral results showed that …