0000000000142743

AUTHOR

François Gelis

The ridge in proton-proton collisions at the LHC

We show that the key features of the CMS result on the ridge correlation seen for high multiplicity events in sqrt(s)=7TeV proton-proton collisions at the LHC can be understood in the Color Glass Condensate framework of high energy QCD. The same formalism underlies the explanation of the ridge events seen in A+A collisions at RHIC, albeit it is likely that flow effects may enhance the magnitude of the signal in the latter.

research product

Summary of Week VII

International audience; Week VII of the INT program 2018 “Probing Nucleons and Nuclei in High Energy Collisions” was dedicated to topics at the interface of the electron-ion collider (EIC), heavy ion and proton-nucleus collisions. The EIC will provide complementary tools to investigate and constrain the initial state in HIC collisions, as well as transport properties of QCD matter which can be extracted from observables that are sensitive to final states interactions such as pt-broadening and energy loss. The contributed talks and discussions covered a variety of physics topics from saturation physics and the origin of multi-particle correlations in HIC to jet quenching and the strong coupl…

research product

Multiparticle correlations in the Schwinger mechanism

We discuss the Schwinger mechanism in scalar QED and derive the multiplicity distribution of particles created under an external electric field using the LSZ reduction formula. Assuming that the electric field is spatially homogeneous, we find that the particles of different momenta are produced independently, and that the multiplicity distribution in one mode follows a Bose-Einstein distribution. We confirm the consistency of our results with an intuitive derivation by means of the Bogoliubov transformation on creation and annihilation operators. Finally we revisit a known solvable example of time-dependent electric fields to present exact and explicit expressions for demonstration.

research product

PREDICTIONS FOR p+PbCOLLISIONS AT $\sqrt{s_{_{\it NN}}} = 5$

Predictions for charged hadron, identified light hadron, quarkonium, photon, jet and gauge bosons in p+Pb collisions at $\sqrt{s_{_{\it NN}}} = 5\, {\rm TeV}$ are compiled and compared. When test run data are available, they are compared to the model predictions.

research product

Long range rapidity correlations and the ridge in A+A collisions

We discuss results for n-gluon correlations that form the basis of the Glasma flux tube picture of early times in heavy ion collisions. Our formalism is valid to all orders in perturbation theory at leading logarithmic accuracy in x and includes both QCD bremsstrahlung and the many body screening and recombination effects that are important at large parton densities. Long range rapidity correlations, as seen in the near-side ridge in heavy ion collisions, are a chronometer of these early time strong color field dynamics. They also contain information on how radial flow develops in heavy ion collisions.

research product

Long range two-particle rapidity correlations in collisions from high energy QCD evolution

Long range rapidity correlations in A+A collisions are sensitive to strong color field dynamics at early times after the collision. These can be computed in a factorization formalism \cite{GelisLV5} which expresses the $n$-gluon inclusive spectrum at arbitrary rapidity separations in terms of the multi-parton correlations in the nuclear wavefunctions. This formalism includes all radiative and rescattering contributions, to leading accuracy in $\alpha_s\Delta Y$, where $\Delta Y$ is the rapidity separation between either one of the measured gluons and a projectile, or between the measured gluons themselves. In this paper, we use a mean field approximation for the evolution of the nuclear wav…

research product