0000000000142901

AUTHOR

Julia M. Burkhart

Temporal quantitative phosphoproteomics of ADP stimulation reveals novel central nodes in platelet activation and inhibition

Adenosine diphosphate (ADP) enhances platelet activation by virtually any other stimulant to complete aggregation. It binds specifically to the G-protein-coupled membrane receptors P2Y1 and P2Y12, stimulating intracellular signaling cascades, leading to integrin aIIbb3 activation, a process antagonized by endothelial prostacyclin. P2Y12 inhibitors are among the most successful antiplatelet drugs, however, show remarkable variability in efficacy. We reasoned whether a more detailed molecular understanding of ADP-induced protein phosphorylation could identify (1) critical hubs in platelet signaling toward aggregation and (2) novel molecular targets for antiplatelet treatment strategies. We ap…

research product

What Can Proteomics Tell Us About Platelets?

More than 130 years ago, it was recognized that platelets are key mediators of hemostasis. Nowadays, it is established that platelets participate in additional physiological processes and contribute to the genesis and progression of cardiovascular diseases. Recent data indicate that the platelet proteome, defined as the complete set of expressed proteins, comprises >5000 proteins and is highly similar between different healthy individuals. Owing to their anucleate nature, platelets have limited protein synthesis. By implication, in patients experiencing platelet disorders, platelet (dys)function is almost completely attributable to alterations in protein expression and dynamic difference…

research product

Response: platelet transcriptome and proteome—relation rather than correlation

We have demonstrated by a detailed statistical analysis of proteome and transcriptome data of human platelets and human cell lines that protein and transcript abundance in platelets, if at all, are only weakly correlated.[1][1] This analysis appears to be in contradiction to previous claims made

research product

The first comprehensive and quantitative analysis of human platelet protein composition allows the comparative analysis of structural and functional pathways.

AbstractAntiplatelet treatment is of fundamental importance in combatting functions/dysfunction of platelets in the pathogenesis of cardiovascular and inflammatory diseases. Dysfunction of anucleate platelets is likely to be completely attributable to alterations in posttranslational modifications and protein expression. We therefore examined the proteome of platelets highly purified from fresh blood donations, using elaborate protocols to ensure negligible contamination by leukocytes, erythrocytes, and plasma. Using quantitative mass spectrometry, we created the first comprehensive and quantitative human platelet proteome, comprising almost 4000 unique proteins, estimated copy numbers for …

research product